Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)
\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)
\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)
Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)
2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)
a: A(x)=0
=>2x-6=0
hay x=3
b: B(x)=0
=>3x-6=0
hay x=2
c: M(x)=0
\(\Rightarrow x^2-3x+2=0\)
=>x=2 hoặc x=1
d: P(x)=0
=>(x+6)(x-1)=0
=>x=-6 hoặc x=1
e: Q(x)=0
=>x(x+1)=0
=>x=0 hoặc x=-1
\(\left\{{}\begin{matrix}a^3-\left(a-1\right)^2=6\\\left(b+1\right)^3-b^2=6\end{matrix}\right.\) \(\Rightarrow a^3-\left(b+1\right)^3-\left[\left(a-1\right)^2-b^2\right]=0\)
Từ đoạn này trở đi chắc bạn đặt nhân tử chung được
Đặt \(R\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)
\(\Rightarrow R\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)
\(\Rightarrow R\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+x^2+2\)
Thay lần lượt \(x=4;x=-1\) vào \(P\left(x\right)\) và cộng lại
Bài 1:
a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.
Mệnh đề A sai.
b)
\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.
c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.
d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)
\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)
\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$
\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)
Mệnh đề đúng.
Lời giải:
a)
Phản chứng. Giả sử ba số đã cho đều nhỏ hơn \(\frac{1}{2}\)
\(\Leftrightarrow \left\{\begin{matrix} |p(-1)|=|1-a+b|< \frac{1}{2}\\ |p(0)|=b< \frac{1}{2}\\ |p(1)|=|1+a+b|< \frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-1}{2}< 1-a+b< \frac{1}{2}(1)\\ \frac{-1}{2}< b< \frac{1}{2}\\ \frac{-1}{2}< 1+a+b< \frac{1}{2}(2)\end{matrix}\right.\)
Lấy (1)+(2) thu được: \(-1< 2+2b< 1\Leftrightarrow \frac{-1}{2}< b+1< \frac{1}{2}\) (3)
Lại có: \(\frac{-1}{2}< b< \frac{1}{2}\Leftrightarrow \frac{1}{2}> -b> \frac{-1}{2}\Leftrightarrow -\frac{1}{2}< -b< \frac{1}{2}(4)\)
Lấy (3)+(4) có: \(-1< 1< 1\) (vô lý)
Do đó điều giả sử là sai.
Nghĩa là một trong 3 số đã cho phải có ít nhất một số lớn hơn hoặc bằng \(\frac{1}{2}\)
b)
Đặt \((2017,2018)=(m,n)\)
Khi đó: \(p(2017)p(2018)=(m^2+am+b)(n^2+an+b)\)
\(=(mn)^2+am^2n+m^2b+amn^2+a^2mn+amb+bn^2+anb+b^2\)
\(=(mn+am+b)^2+a(mn+am+b)(n-m)+b(n-m)^2\)
Thay \((m,n)=(2017, 2018)\)
\(\Rightarrow p(2017)p(2018)=(2017.2018+2017a+b)^2+a(2017.2018+2017a+b)+b\)
\(=f(2017.2018+2017a+b)\)
Do đó tồn tại số r thỏa mãn điều kiện đề bài.
Cụ thể \(r=2017.2018+2017a+b\)
Akai Haruma là nữ ạ???