
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


mik giải thích 1 tí nha
TH1:nếu bn so sánh các p/s cùng mẫu thì tử lớn hơn thì phân số đó lớn hơn
TH2:nếu bn so sánh các p/s cùng tử thì mẫu lớn hơn thì phân số đó nhỏ hơn

Vì -3 < x < 3
\(\Rightarrow\)x\(\left(-2;-1;0;1;2\right)\)

\(B=\frac{2n+4}{n^2+4n+3}=\frac{2.\left(n+2\right)}{n^2+n+3n+3}=\frac{2.\left(n+2\right)}{n.\left(n+1\right)+3.\left(n+1\right)}=\frac{2.\left(n+2\right)}{\left(n+1\right)\left(n+3\right)}\)
+) Nếu n = 2k:
2.(2k+2) = 4.(k+1) = chẵn
(2k+1).(2k+3) = lẻ . lẻ = lẻ
=> B tối giản
+) Nếu n = 2k+1:
2.(2k+1+2) = 2.(2k+3) = chẵn
(2k+1+1).(2k+1+3) = 2.(k+1).2.(k+2)=4.(k+1)(k+2) = chẵn
=> B không tối giản
Vậy với n là số chẵn thì B tối giản; n là số lẻ thì B không tối giản.

A=2+4+6+.........+2400
ssh=(2400-2):2+1 = 1200
tổng=(2400+2).1200:2=1441200
bài b tương tự nhé
1. A = 2 + 4 + 6 + ... + 2400
Số số hạng của dãy là :
( 2400 - 2 ) : ( 4 - 2 ) + 1 = 1200
Tổng A là : ( 2400 + 2 ) x 1200 : 2 = 1441200
B = 5 + 10 + 15 + ... + 1550
Số số hạng của dãy là :
( 1550 - 5 ) : ( 10 - 5 ) + 1 = 310
Tổng B là : ( 1550 + 5 ) x 310 : 2 = 241025
2.
a. 5 , 6 , 7 , 8 , 9 ( x = 5 )
b. 1 , 2 , 3 , 4 , 5 ( x = 5 )
c. 3 , 4 , 5 , 6 , 7 ( x = 5 )

Bài 1
Ta có
\(10^{2011}+8=1000.....08\)( 2011 số 0 )
Có tổng chữ số là \(1+0.2011+8=9⋮9\)
\(\Rightarrow10^{2011}⋮9\)
Bài 2 :
Vì \(\begin{cases}2^{100}.7.11⋮7\\3^{81}.13.14⋮7\end{cases}\)\(\Rightarrow2^{100}.7.11+3^{81}.13.14⋮7\)
=> Hợp số
Bài 1:
\(10^{2011}+8\) không chia hết cho 9 vì:
+) \(10^{2011}\) không chia hết cho 9 ( vì không có số 10, 100, 1000,... nào chia hết cho 9 )
+) 8 không chia hết cho 9
Từ những điều trên ta kết luận rằng \(10^{2011}+8\) không chia hết cho 9
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!