
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Thế này bạn nhé:
a) Ta có: B(5) = {0;5;10;15;20;25;...}
\(\Rightarrow\)x \(\in\) {0;5;10;15;20;25;...}
mà x\(\le\) 20 \(\Rightarrow\) x\(\in\){0;5;10;15;20}
( Bạn nhớ khi viết bội hoặc ước có giới hạn thì phải viết vượt qua giới hạn mới suy ra đáp án nhé!)
b) x \(\in\) Ư(20) và x \(\le\) 4
Ta có:Ư(20) = { 1;2;4;5;10;20}
\(\Rightarrow\)x \(\in\) { 1;2;4;5;10;20}
mà x \(\le\) 4\(\Rightarrow\) x \(\in\) {1;2;4}

10 - { [ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 } = 5
[ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 = 10 - 5 = 5
( x : 3 + 17 ) : 10 + 3 : 24 = 5 x 10
( x : 3 + 17 ) : 10 + 48 = 50
( x : 3 + 17 ) : 10 = 50 - 48
( x : 3 + 17 ) : 10 = 2
x : 3 + 17 = 2 x 10
x : 3 + 17 = 20
x : 3 = 20 - 17 = 3
x = 3 x 3 = 9
a) [(2x+14) : 4 - 3] : 2 = 1
(2x+14) : 4 - 3 = 1/2
(2x+14) : 4 = 1/2 + 3
(2x+14) : 4 = 7/2
2x+14 = 7/2 . 1/4
2x = 7/8 - 1/4
2x = 5/8
x= 5/8.1/2
x= 5/16

a, vì n, n+1 là hai số nguyên liên tiếp
=> có một số chẵn
=> tích chúng là 1 số chẵn
b, vì n thuộc Z nên 3n-4;3n+19 cũng thuộc Z
Vì hai thừa số đều mang tính chẵn ; lẻ
=> tích chúng là số chẵn
c, n^2-n+1
=> n(n-1)+1
Mà n; n-1 là 2 số nguyên liên tiếp
=> sẽ có 1 số chẵn => n(n-1) là chẵn => n(n-1)+1 là số lẻ
=> n^2-n+1 là lẻ

Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.
*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.
*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3)
=> P = 3k + 1 hoặc 3k + 2
+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại
+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại
Vậy P chỉ có thể = 3
Bài 2: S = 30 + 31 + 32 + ... + 3123
S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)
S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)
S = 30.40 + ... + 3120.40
S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120)
Vì tích chứa 10 => S chia hết cho 10.
S = 1 + 3 + 32 + ... + 3123
S = ( 1 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )
S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)
S = 1.40 + 34.40 + ... + 3120.40
S = 4.10.(1+34+...+3120) chia hết cho 10
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!