
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bước 1: Phân tích \(2^{2025} + 2\)
Ta có:
\(2^{2025} + 2 = 2 \left(\right. 2^{2024} + 1 \left.\right)\)
Vậy phương trình trở thành:
\(\left(\right. 2 x + y \left.\right) \left(\right. 10 x + 3 y \left.\right) = 2 \left(\right. 2^{2024} + 1 \left.\right)\)
Bước 2: Quan sát tính chẵn/lẻ
- \(2 x + y\) và \(10 x + 3 y\) là các số tự nhiên.
- Hãy xem chúng có thể chia 2 như thế nào.
Gọi \(a = 2 x + y\), \(b = 10 x + 3 y\). Ta có:
\(a \cdot b = 2 \left(\right. 2^{2024} + 1 \left.\right)\)
- Nhận xét: \(2^{2024} + 1\) là số lẻ.
- Vậy \(2 \left(\right. 2^{2024} + 1 \left.\right)\) là số chẵn nhưng không chia hết cho 4.
- Vì \(a \cdot b = 2 \cdot \left(\right. \text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{l}ẻ \left.\right)\), nghĩa là một trong hai số \(a\) hoặc \(b\) là chẵn, số còn lại là lẻ.
Bước 3: Thử phân tích
- Nếu \(a = 2\) → \(b = 2^{2024} + 1\)
→ Từ \(a = 2 = 2 x + y\) → \(y = 2 - 2 x\)
→ \(y \geq 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 0 , 1\) - \(x = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } y = 2\)
→ \(b = 10 x + 3 y = 0 + 3 * 2 = 6 \neq 2^{2024} + 1\) → Không được. - \(x = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } y = 0\)
→ \(b = 10 * 1 + 3 * 0 = 10 \neq 2^{2024} + 1\) → Không được.
- \(x = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } y = 2\)
- Nếu \(b = 2\) → \(a = 2^{2024} + 1\)
→ \(10 x + 3 y = 2\) → Không có nghiệm tự nhiên vì 10x ≥0, 3y ≥0 mà tổng bằng 2.
Bước 4: Kết luận
- Không thể phân tích \(2^{2025} + 2\) thành tích của hai số tự nhiên nhỏ như \(2 x + y\) và \(10 x + 3 y\).
- Vì \(2^{2024} + 1\) là số lẻ rất lớn, không thể biểu diễn dưới dạng \(2 x + y\) với \(x , y \in \mathbb{N}\).
✅ Vậy không tồn tại cặp số tự nhiên \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình.

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

1) bạn dùng dấu U
điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)
muons dễ nhìn thì vẽ trục số: 0 -1/4 1 x
=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)

\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)\)
Để hàm số có cực trị tại x = 1 thì x =1 phải là nghiệm của y'=0.
=> \(3.1^2-2m.1+\left(m-\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow m=\dfrac{7}{3}\)
Khi đó ta có:
\(y=x^3-\dfrac{7}{3}x^2+\dfrac{5}{3}x+5\)
\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)=\dfrac{1}{3}\left(9x^2-14x+5\right)\)
\(y'\) có 2 nghiệm là \(1\) và \(\dfrac{5}{9}\).
\(y'\) đổi dấu từ âm sang dương khi đi qua x = 1 nên tại x = 1 thì hàm số đạt cực tiểu.
Giá trị cực tiểu tại x = 1 là:
\(y\left(1\right)=1^3-\dfrac{7}{3}.1^2+\dfrac{5}{3}.1+5=\dfrac{16}{3}\)

\(\int\limits^2_{-1}f\left(x\right)dx=\int\limits^1_{-1}f\left(x\right)dx+\int\limits^2_1f\left(x\right)dx=\int\limits^1_{-1}\left(x^2+b\right)dx+\int\limits^2_1\left(ax+1\right)dx\)
\(=\left(\frac{x^3}{3}+bx\right)|^1_{-1}+\left(\frac{ax^2}{2}+x\right)|^2_1=\frac{5}{3}+2b+\frac{3a}{2}\)

Đừng quan tâm cái \(k2\pi\) đi, lấy nghiệm là số cố định thôi. Ví dụ \(\cos x=1\) thì bạn tìm được dấu bằng xảy ra khi \(x=0\)
nghĩa là vứt luôn k2\(\pi\) ạ? chỉ ghi nghiệm là số đằng trước thôi ạ?

Lời giải:
\(\int ^{1}_{0}x^2dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}; \int ^{1}_{0}x^3dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^4}{4}=\frac{1}{4}\)
\(\frac{1}{3}>\frac{1}{4}\Rightarrow A\) đúng.
Câu B. Xét về mặt điều kiện thì với \(x>0\Rightarrow \frac{1}{x+1}\) luôn có nghĩa, lúc này hàm số mới có tích phân được.
Xét theo định nghĩa nguyên hàm thì luôn đúng vì \(F(x)=\int f(x)dx\Leftrightarrow f(x)=F'(x)\)
Câu D.
\(\int ^b_af(x)dx+\int ^c_bf(x)dx=F(b)-F(a)+F(c)-F(b)\)
\(=F(c)-F(a)=\int ^c_af(x)dx\)
Do đó D đúng.
Do đó câu C sai.
Nếu \(\int ^a_{-a}f(x)dx=2\int ^{a}_0f(x)dx\)
\(\Leftrightarrow F(a)-F(-a)=2F(a)-2F(0)\)
\(\Leftrightarrow F(a)+F(-a)=2F(0)\)
Giả sử cho \(F(x)=x^2\), \(a\neq 0\)thì điều trên hiển nhiên vô lý
Do đó C sai.

Bài 1)
Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).
Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)
\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)
Vậy số phức cần tìm là \(\frac{5}{6}+4i\)
b)
\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)
\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!