Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là a.ta có:a=4n+3
=17m+9
=19k+13
\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)
\(=17m+9+25=17m+34=17\left(m+2\right)⋮17\)
\(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)
\(\Rightarrow a+25⋮17,4,19\)
\(\Rightarrow a+25⋮1292\)
\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)
do 1267<1292 nên số dư của phép chia là 1267
2,
gọi ƯCLN[2n+1,2n(n+1)] là d
\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)
\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)
\(\Rightarrow n⋮d\)
MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
suy ra đpcm
Ta có:
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{n+3}\)
\(\Leftrightarrow S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}\)
\(\Rightarrow\frac{n+2}{n+3}< 1\Rightarrow S< 1\)
=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)
=>S= 1- 1/(n+3)
=>S + 1/(n+3) = 1
=>S<1
Ta có :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)
\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên :
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\)
\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(n-2< S< n-1\)
Vì \(n>3\) nên \(S\) không là số tự nhiên
Vậy \(S\) không là số tự nhiên
Chúc bạn học tốt ~
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
\(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{n\left(n+3\right)}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}\)
\(=1-\frac{1}{n+3}\)
Ta có :
\(\frac{1}{n+3}>0\)
\(\Leftrightarrow-\frac{1}{n+3}< 0\)
\(\Leftrightarrow1-\frac{1}{n+3}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}\)
\(S=\frac{n+2}{n+3}\)
Vi \(n\inℕ^∗\)nên \(n+2< n+3\)
DO đó\(\frac{n+2}{n+3}< 1\)
Vậy S <1
- S = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
- S = \(1-\frac{1}{n+3}\)
\(\Rightarrow\) S < 1 ( đpcm )
=> S = ( 1 -\(\frac{1}{4}\)) + ( \(\frac{1}{4}\)- \(\frac{1}{7}\)) +(\(\frac{1}{7}\)- \(\frac{1}{10}\)) +.....+ (\(\frac{1}{n}\)- \(\frac{1}{n+3}\))
=> S = 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{10}\)+......+ \(\frac{1}{n}\)- \(\frac{1}{n+3}\)
=> S = 1 - \(\frac{1}{n+3}\)
vậy S = 1- \(\frac{1}{n+3}\)
Ta có : \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}\)
\(\Leftrightarrow S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=\frac{1}{1}-\frac{1}{n+3}\)
\(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}<1\)