Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n-18=5u_{n-1}-21=5\left(u_{n-1}-18\right)+69\)
Đặt \(v_n=u_n-18\Rightarrow\left\{{}\begin{matrix}v_1=-17\\v_n=5v_{n-1}+69\end{matrix}\right.\)
\(\Rightarrow v_n+\frac{69}{4}=5\left(v_{n-1}+\frac{69}{4}\right)\)
Đặt \(v_n+\frac{69}{4}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\frac{1}{4}\\x_n=5x_{n-1}\end{matrix}\right.\)
\(\Rightarrow x_n\) là CSN với công bội \(q=5\Rightarrow x_n=x_1.q^{n-1}=\frac{1}{4}5^{n-1}\)
\(\Rightarrow v_n=x_n-\frac{69}{4}=\frac{1}{4}5^{n-1}-\frac{69}{4}\)
Bạn coi lại đề bài, rõ ràng đây ko phải là 1 cấp số nhân
U1 = 2.1 - 1 = 1
U2 = 2.2 - 1 = 3
U3 = 2.3 - 1 = 5
U4 = 2.4 - 1 = 7
U5 = 2.5 - 1 = 9
Đáp án D
Xét u 2018 v 2018 = S 2018 - S 2017 T 2018 - T 2017 = 3 5
a)u(n+1) = 1 + 1/(n+1); v(n+1) = 5(n + 1) - 1 = 5n + 4
b) Ta có:
⇒ u(n+1) < un, ∀n ∈ N*
v(n+1) - vn = (5n + 4) - (5n - 1) = 5 > 0
⇒ v(n+1) > vn ,∀n ∈ N*
a: |q|=1/2<1
b: Sn=U1+u2+...+un
\(S_n=\dfrac{1\left(1-\left(\dfrac{1}{2}\right)^n\right)}{1-\dfrac{1}{2}}=2\left(1-\left(\dfrac{1}{2}\right)^n\right)\)
=>\(lim\left(S_n\right)=2\)