K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 11 2019

\(u_n-18=5u_{n-1}-21=5\left(u_{n-1}-18\right)+69\)

Đặt \(v_n=u_n-18\Rightarrow\left\{{}\begin{matrix}v_1=-17\\v_n=5v_{n-1}+69\end{matrix}\right.\)

\(\Rightarrow v_n+\frac{69}{4}=5\left(v_{n-1}+\frac{69}{4}\right)\)

Đặt \(v_n+\frac{69}{4}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\frac{1}{4}\\x_n=5x_{n-1}\end{matrix}\right.\)

\(\Rightarrow x_n\) là CSN với công bội \(q=5\Rightarrow x_n=x_1.q^{n-1}=\frac{1}{4}5^{n-1}\)

\(\Rightarrow v_n=x_n-\frac{69}{4}=\frac{1}{4}5^{n-1}-\frac{69}{4}\)

Bạn coi lại đề bài, rõ ràng đây ko phải là 1 cấp số nhân

31 tháng 5 2018

7 tháng 12 2017

a) Năm số hạng đầu là Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Lập tỉ số

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo công thứcđịnh nghĩa ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy, dãy số ( v n ) là cấp số nhân, có v 1   =   1 / 3 ,   q   =   1 / 3

c) Để tính ( u n ) , ta viết tích của n - 1 tỉ số bằng 1/3

Giải sách bài tập Toán 11 | Giải sbt Toán 11

8 tháng 11 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

19 tháng 2 2018

a)u(n+1) = 1 + 1/(n+1); v(n+1) = 5(n + 1) - 1 = 5n + 4

b) Ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

⇒ u(n+1) < un, ∀n ∈ N*

v(n+1) - vn = (5n + 4) - (5n - 1) = 5 > 0

⇒ v(n+1) > vn ,∀n ∈ N*

22 tháng 8 2019

Đáp án B

11 tháng 8 2017

Đáp án C

⇒ u 3 v 3 > 6

Bằng quy nạp ta chỉ ra được

21 tháng 9 2018

a. u1 = - 1, un + 1 = un + 3 với n > 1

u1 = - 1;

u2 = u1 + 3 = -1 + 3 = 2

u3 = u2 + 3 = 2 + 3 = 5

u4 = u3 + 3 = 5 + 3 = 8

u5 = u4 + 3 = 8 + 3 = 11

b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)

+ Khi n = 1 thì u1 = 3.1 - 4 = -1, vậy (1) đúng với n = 1.

+ Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4.

+ Ta chứng minh (1) đúng với n= k+ 1 tức là chứng minh: uk+1 = 3(k+1) - 4

Thật vậy,ta có : uk + 1 = uk + 3 = 3k – 4 + 3 = 3(k + 1) – 4.

⇒ (1) đúng với n = k + 1

Vậy (1) đúng với ∀ n ∈ N*.

2 tháng 3 2017

l i m   v n   =   0   ⇒   | v n | có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi (1)

Vì | u n |   ≤   v n   v à   v n   ≤   | v n | với mọi n, nên | u n |   ≤   | v n | với mọi n. (2)

Từ (1) và (2) suy ra | u n | cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là l i m   u n = 0

8 tháng 3 2017

b) Công thức truy hồi

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Số hạng thứ năm.