K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

a. u1 = - 1, un + 1 = un + 3 với n > 1

u1 = - 1;

u2 = u1 + 3 = -1 + 3 = 2

u3 = u2 + 3 = 2 + 3 = 5

u4 = u3 + 3 = 5 + 3 = 8

u5 = u4 + 3 = 8 + 3 = 11

b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)

+ Khi n = 1 thì u1 = 3.1 - 4 = -1, vậy (1) đúng với n = 1.

+ Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4.

+ Ta chứng minh (1) đúng với n= k+ 1 tức là chứng minh: uk+1 = 3(k+1) - 4

Thật vậy,ta có : uk + 1 = uk + 3 = 3k – 4 + 3 = 3(k + 1) – 4.

⇒ (1) đúng với n = k + 1

Vậy (1) đúng với ∀ n ∈ N*.

21 tháng 9 2019

a. Năm số hạng đầu của dãy số

Giải bài tập Đại số 11 | Để học tốt Toán 11

b. Dự đoán công thức số hạng tổng quát của dãy số:

un =√(n+8) (1)

Rõ ràng (1) đúng với n = 1

Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ (1) đúng với n = k + 1

⇒ (1) đúng với mọi n ∈ N*.

24 tháng 11 2019

a. 5 số hạng đầu dãy là:

u1 = 2;

u= 2u1 – 1 = 3;

u3 = 2u2 – 1 = 5;

u4 = 2u3 – 1 = 9;

u5 = 2u4 – 1 = 17

b. Chứng minh un = 2n – 1 + 1 (1)

+ Với n = 1 ⇒ u1 = 21 - 1 + 1 = 2 (đúng).

+ Giả sử (1) đúng với n = k ≥ 1, tức là uk = 2k-1 + 1 (1)

Ta chứng minh: uk+1 = 2k + 1. Thật vậy, ta có:

⇒ uk+1 = 2.uk – 1 = 2(2k-1 + 1) – 1 = 2.2k – 1 + 2 – 1 = 2k + 1

⇒ (1) cũng đúng với n = k + 1 .

Vậy un = 2n – 1 + 1 với mọi n ∈ N.

9 tháng 4 2017

a) Năm số hạng đầu của dãy số là -1, 2, 5, 8, 11.

b) Chứng minh un = 3n - 4 bằng phương pháp quy nạp:

Với n =1 thì u1 3.1 - 4 = -1, đúng.

Giả sử hệ thức đúng với n = k ≥ 1, tức là uk = 3k -4. Ta chứng minh hệ thức cũng đúng với n = k + 1.

Thật vậy, theo công thức của dãy số và giả thiết quy nạp, ta có:

uk+1 = uk + 3 = 3k - 4 + 3 = 3(k + 1) - 4.

Vậy hệ thức đúng với mọi n ε N*



19 tháng 1 2020

Câu b lộn phải là u1=3, un=√1+u2n-1 khi n>1

9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.


9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.


12 tháng 1 2018

\(u_n=1+2\left(n-1\right)=1+2n-2=2n-1\left(\text{*}\right)\)

Chứng minh

Với \(n=1\)

\(VT=1;VP=2\cdot1-1=1=VT\)

Vậy \(\left(\text{*}\right)\) đúng với \(n=1\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\ge1\) tức là

\(u_k=u_{k-1}+2=2k-1\)

Ta chứng minh \(\left(\text{*}\right)\) đúng với \(n=k+1\)

Thật vậy, từ giả thuyết quy nạp ta có

\(u_{k+1}=u_k+2=2k-1+2=2k+2-1=2\left(k+1\right)-1\)

Vậy ...

12 tháng 1 2018

Mới vô tính đú luôn toán lp 11 ak....đỉnh nhỉ...> . <...