Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5+3^{x+1}=86\)
\(3^{x+1}=81\)
\(3^{x+1}=3^4\)
\(\Rightarrow x+1=4\)
\(x=3\)
\(1,\left|x+2\right|-12=-1\)
\(\Rightarrow\left|x+2\right|=11\)
\(\Rightarrow\orbr{\begin{cases}x+2=11\\x+2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=9\\x=-13\end{cases}}\)
\(2,135-\left|9-x\right|=35\)
\(\Rightarrow\left|9-x\right|=100\)
\(\Rightarrow\orbr{\begin{cases}9-x=100\\9-x=-100\end{cases}\Rightarrow\orbr{\begin{cases}x=-91\\x=109\end{cases}}}\)
\(3,xy+2x+2y=-16\)
\(\Rightarrow x\left(y+2\right)+2y+4=-16+4\)
\(\Rightarrow x\left(y+2\right)+2\left(y+2\right)=-12\)
\(\Rightarrow\left(x+2\right)\left(y+2\right)=-12\)
xét bảng :
x+2 | -1 | 1 | -2 | 2 | -3 | 3 | -4 | 4 | -6 | 6 | -12 | 12 |
y+2 | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
x | -3 | -1 | -4 | 0 | -5 | 1 | -6 | 2 | -8 | 4 | -14 | 10 |
y | -14 | 10 | -8 | 4 | -6 | 2 | -5 | 1 | -5 | 0 | -3 | -1 |
+) Với n lẻ thì ( n + 15 ) là số chẵn => ( n + 10 ) ( n + 15 ) chia hết cho 2
+) Với n chẵn thì ( n + 10 ) là số chẵn => ( n + 10 ) ( n + 15 ) chia hết cho 2
+) Với n = 0 thì ( n + 10 ) = 10 là số chẵn => ( n + 10 ) ( n + 15 ) chia hết cho 2
xét n lẻ , chắn rồi làm từng trường hợp vẽ chẳn
nếu số chẵn nhân lẻ ra số chẵn chia hết cho 2
nếu số lẻ nhân số chắn ra số chắn chia hết cho 2
vậy với moị x thuộc n thì ....
Câu 1 :
Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)
\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)
Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)
\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)
Vì 10101+1<10102+1
\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)
\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)
\(\Rightarrow\)10A>10B
\(\Rightarrow\)A>B
Vậy A>B.
Câu 2 :
Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì 2001<2001+2002 và 2002<2001+2002
\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)
\(\Rightarrow C>E\)
Vậy C>E.
a) Ta có \(10^{2m}+18=10^{2m}-10^m+10^m+18\)
\(=10^m.\left(10^m-1\right)+\left(10^m-1\right)+19⋮19\)
10.10.10.10.10.10.10.........10.....
10 mũ n = các số tự nhiên
suy ra n = {10.10.10.10...}