K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Câu 1 :

Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)

\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)

Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)

\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)

Vì 10101+1<10102+1 

\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)

\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)

\(\Rightarrow\)10A>10B

\(\Rightarrow\)A>B

Vậy A>B.

8 tháng 2 2020

Câu 2 :

Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)

Vì 2001<2001+2002 và 2002<2001+2002

\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)

\(\Rightarrow C>E\)

Vậy C>E.

2 tháng 7 2015

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2002}\)

<=>\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2002}+1\)

<=>\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

<=>\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

<=>\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

=>x+2004=0

<=>x=-2004

Vậy x=-2004

 

Ta có A = \(\frac{10^{100}-1}{10^{98}-1}=\frac{10^{98}.10^2-10^2+99}{10^{98}-1}\)

                                       \(=\frac{10^2\left(10^{98}-1\right)+99}{10^{98-1}}\)

                                        \(=10^2+\frac{99}{10^{98}-1}\)

        B= \(\frac{10^{101}-1}{10^{99}-1}=\frac{10^{99}.10^2-10^2+99}{10^{99}-1}\)

                                     \(=\frac{10^2\left(10^{99}-1\right)+99}{10^{99}-1}\)

                                       \(=10^2+\frac{99}{10^{99}-1}\)

  Vì \(\frac{99}{10^{98}-1}>\frac{99}{10^{99}-1}\)nên \(10^2+\frac{99}{10^{98}-1}>10^2+\frac{99}{10^{99}-1}\)=> A > B

                                     Vậy A > B

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

10 tháng 1 2016

Nhớ có lời giải nha các bạn , lm đc mk kết bạn với !!!! (^-^)

10 tháng 1 2016

= tự làm

hoặc

= máy tính

6 tháng 4 2019

\(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1+\frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(P< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}=\frac{7}{4}-\frac{1}{2019}< \frac{7}{4}\)

8 tháng 4 2018

Ta có \(\frac{1}{9S}=\frac{9^{2017}+\frac{1}{9}}{9^{2017}+1}\)=   \(\frac{9^{2017}+1-\frac{8}{9}}{9^{2017}+1}=1-\frac{\frac{8}{9}}{9^{2017}+1}\)

           \(\frac{1}{9M}=\frac{9^{2016}+\frac{1}{9}}{9^{2016}+1}\)=    \(\frac{9^{2016}+1-\frac{8}{9}}{9^{2016}+1}=1-\frac{\frac{8}{9}}{9^{2016}+1}\)

Vì \(9^{2016}+1< 9^{2017}+1\)=> \(\frac{\frac{8}{9}}{9^{2016}+1}>\frac{\frac{8}{9}}{9^{2017}+1}\)

=> \(1-\frac{\frac{8}{9}}{9^{2016}+1}< 1-\frac{\frac{8}{9}}{9^{2017}+1}\)=>  \(\frac{1}{9}S< \frac{1}{9}M\Rightarrow S< M\)

13 tháng 4 2015

ta có \(A=\frac{1}{100}+\frac{1}{101}+...+\frac{1}{149}\)

      ta thấy    \(\frac{1}{100}=\frac{1}{100}\)

                     \(\frac{1}{101}<\frac{1}{100}\)

                      \(\frac{1}{102}<\frac{1}{100}\)

                 ................................

                       \(\frac{1}{149}<\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{149}<\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

                                                                        \(=\frac{49}{100}<\frac{1}{2}\)

                  vì \(A<\frac{49}{100}<\frac{1}{2}\Leftrightarrow A<\frac{1}{2}\)