Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) chia hết cho 2:
Nếu n = 2k+1 thì n+1 \(⋮\)2
Nếu n = 2k thì n+4 \(⋮\)2
+) chia hết cho 3:
nếu n = 3k thì n + 3 \(⋮\)3
nếu n = 3k +1 thì n +5 = 3k +6 \(⋮\)3
nếu n = 3k +2 thì n+1 = \(3k+3⋮3\)
Vậy tích trên luôn chia hết cho 2 và 3
\(=3^{n+2}+3^n-2^{n+2}-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=10.3^n-2.2^{n-1}.5=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)
Chia hết cho 10
(l ike nha)
\(A=\left(a+a^2\right)+\left(a^3+a^4\right)+....+\left(a^{2n-1}+a^{2n}\right)=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{2n-1}\left(1+a\right)\)
\(=\left(a+1\right)\left(a+a^3+....+a^{2n-1}\right)\)
=> A chia hết cho a +1 với mọi n thuộc N
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(2^n⋮2\) ; \(5⋮5\) và \(\left(5;2\right)=1\) \(\Rightarrow2^n\cdot5⋮10\)
\(3^n\cdot10⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^
a/ Ta có ( n+ 10)( n+ 15)
\(=n^2+15n+10n+150\)
\(=n^2+25n+150\)
\(=n\left(n+25\right)+150\)
Xét 2 trường hợp chẵn, lẻ...Dễ thấy, n( n+ 25) luôn chẵn vs \(\forall n\in N\)
\(\Rightarrow n\left(n+25\right)+150\)luôn chẵn
Hay \(\left(n+10\right)\left(n+15\right)⋮2\)
P/s: Mọi người có thể làm cách khác nhanh hơn, dù sao mk cx đã cố gắng
+) Với n lẻ thì ( n + 15 ) là số chẵn => ( n + 10 ) ( n + 15 ) chia hết cho 2
+) Với n chẵn thì ( n + 10 ) là số chẵn => ( n + 10 ) ( n + 15 ) chia hết cho 2
+) Với n = 0 thì ( n + 10 ) = 10 là số chẵn => ( n + 10 ) ( n + 15 ) chia hết cho 2
xét n lẻ , chắn rồi làm từng trường hợp vẽ chẳn
nếu số chẵn nhân lẻ ra số chẵn chia hết cho 2
nếu số lẻ nhân số chắn ra số chắn chia hết cho 2
vậy với moị x thuộc n thì ....