Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Bảng giá trị:
x | -1 | 0 | 1 |
y=2x-4 | -6 | -4 | -2 |
y=3x+3 | 0 | 3 | 6 |
y=-x | 1 | 0 | -1 |
*Vẽ đồ thị:
mặt phẳng tọa độ Oxy, đồ thị hàm số y = 3/2x - 2 (1) và y = -1/2x + 2 (2). Gọi M là giao điểm của 2 hai đồ thị trên, tìm tọa độ của M
phương trình hoành độ giao điểmM là
3/2x-2=-1/2x+2=>x=2
Tung độ giao điểm M là
y=-1/2.2+2=1
=>M(2;1)
tìm m để đt (d) y= (m-1)x+1 đồng quy với 2 đths (1) và (2)
đt (d) y= (m-1)x+1 đồng quy với 2 đths (1) và (2)
=>đt (d) y= (m-1)x+1 đi qua điểm M(2;1)
=>1=(m-1)2+1=>m=1
a:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}3x+3=-2x+8\\y=-2x+8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=5\\y=-2x+8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=-2+8=6\end{matrix}\right.\)
Vậy: A(1;6)
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\3x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\-2x+8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\-2x=-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy: A(1;6); B(-1;0); C(4;0)
\(AB=\sqrt{\left(-1-1\right)^2+\left(0-6\right)^2}=2\sqrt{10}\)
\(AC=\sqrt{\left(4-1\right)^2+\left(0-6\right)^2}=3\sqrt{5}\)
\(BC=\sqrt{\left(4+1\right)^2+\left(0-0\right)^2}=5\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot BA\cdot AC}=\dfrac{40+45-25}{2\cdot2\sqrt{10}\cdot3\sqrt{5}}=\dfrac{\sqrt{2}}{2}\)
=>\(sinBAC=\sqrt{1-\left(\dfrac{\sqrt{2}}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}\cdot2\sqrt{10}\cdot3\sqrt{5}=15\)
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x=1-3x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=1\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{2}{5}\end{matrix}\right.\)
b: Thay x=1/5 và y=2/5 vào y=kx+1, ta được:
1/5k+1=2/5
=>1/5k=-3/5
hay k=-3
a) Vẽ đường thẳng y = 2x -1 trên mặt phẳng tọa độ
Với x = 0 thì y = -1, ta được điểm A(0; -1) thuộc đồ thị hàm số y = 2x – 1
Với x = 1 thì y = 1, ta được điểm B(1; 1) thuộc đường thẳng y = 2x – 1
Đồ thị hàm số y = 2x – 1 là một đường thẳng đi qua hai điểm A(0; -1) và điểm B(1; 1)
b) Vì đường thẳng y = ax + b \(\left( {a \ne 0} \right)\) song song với đường thẳng y = 2x -1 nên a = 2
Đường thẳng dã cho là: y = 2x + b
Vì đường thẳng y = 2x + b đi qua điểm M(1; 3) nên:
3 = 2.1 + b suy ra b = 1
Vậy đường thẳng cần tìm là; y = 2x + 1
* Vẽ đường thẳng y = 2x + 1
Với x = 0 thì y = 1, ta được điểm P(0, 1) thuộc đồ thị hàm số y = 2x + 1
Với x = 1 thì y = 1, ta được điểm Q(1; 3) thuộc đồ thị hàm số y = 2x + 1
Đồ thị hàm số y = 2x + 1 là đường thẳng đi qua hai điểm P(0; 1) và Q(1; 3)
+) Hàm số \(y=\frac{1}{2}x+2\)
\(x=0\Rightarrow y=2\)\(\Rightarrow A\left(0;2\right)\)
\(y=0\Rightarrow x=-4\)\(\Rightarrow B\left(-4;0\right)\)
Đồ thị hàm số \(y=\frac{1}{2}x+2\)là đường thẳng đi qua 2 điểm \(A\left(0;2\right)\)và \(B\left(-4;0\right)\)
+) Hàm số y = -x + 2
\(x=0\Rightarrow y=2\)\(\Rightarrow A\left(0;2\right)\)
\(y=0\Rightarrow x=2\)\(\Rightarrow D\left(2;0\right)\)
Đồ thị hàm số y = -x + 2 là đường thẳng đi qua 2 điểm \(A\left(0;2\right)\)và \(D\left(2;0\right)\)
a:
Vẽ đường thẳng y=-3x-3
y=-3-3x
=>3x+y+3=0
Khoảng cách từ O đến đường thẳng y=-3x-3 là:
\(\dfrac{\left|0\cdot3+0\cdot1+3\right|}{\sqrt{3^2+1^2}}=\dfrac{3}{\sqrt{10}}\)
b:
Vẽ đường thẳng y=x
y=x
=>x-y=0
Khoảng cách từ O(0;0) đến đường thẳng y=x là:
\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+0\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{2}}=0\)
c:
Vẽ đồ thị y=-x
y=-x
=>x+y=0
Khoảng cách từ O(0;0) đến đường thẳng y=-x là:
\(\dfrac{\left|0\cdot1+0\cdot1+0\right|}{\sqrt{1^2+1^2}}=0\)
d:
Vẽ đồ thị hàm số y=1/2x
y=1/2x
=>1/2x-y=0
Khoảng cách từ O(0;0) đến đường thẳng y=1/2x là:
\(\dfrac{\left|0\cdot\dfrac{1}{2}+0\cdot\left(-1\right)+0\right|}{\sqrt{\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{\dfrac{1}{4}+1}}=0\)
Bảng xét dấu:
vẽ đồ thị:
Để vẽ các đường thẳng y = 3x, y = 3x + 4, y = -1/2x + 3 và y = -1/2x trên mặt phẳng tọa độ, chúng ta sẽ sử dụng hệ số góc và điểm cắt trục y của mỗi đường thẳng.
Đường thẳng y = 3x có hệ số góc là 3 và điểm cắt trục y là (0,0). Ta có thể vẽ đường thẳng này bằng cách bắt đầu từ điểm (0,0) và dùng hệ số góc 3 để vẽ đường thẳng đi qua các điểm khác trên mặt phẳng.
Đường thẳng y = 3x + 4 có hệ số góc là 3 và điểm cắt trục y là (0,4). Ta có thể vẽ đường thẳng này bằng cách bắt đầu từ điểm (0,4) và dùng hệ số góc 3 để vẽ đường thẳng đi qua các điểm khác trên mặt phẳng.
Đường thẳng y = -1/2x + 3 có hệ số góc là -1/2 và điểm cắt trục y là (0,3). Ta có thể vẽ đường thẳng này bằng cách bắt đầu từ điểm (0,3) và dùng hệ số góc -1/2 để vẽ đường thẳng đi qua các điểm khác trên mặt phẳng.
Đường thẳng y = -1/2x không có điểm cắt trục y, nên ta có thể vẽ đường thẳng này bằng cách bắt đầu từ điểm (0,0) và dùng hệ số góc -1/2 để vẽ đường thẳng đi qua các điểm khác trên mặt phẳng.
Dưới đây là hình vẽ các đường thẳng trên mặt phẳng tọa độ:
```
| /
| /
| /
| /
| /
| /
| /
|/
---+-----------------
```
Đường thẳng y = 3x được biểu diễn bởi đường thẳng có góc nghiêng dương và đi qua gốc tọa độ (0,0).
Đường thẳng y = 3x + 4 được biểu diễn bởi đường thẳng có góc nghiêng dương và đi qua điểm (0,4) trên trục y.
Đường thẳng y = -1/2x + 3 được biểu diễn bởi đường thẳng có góc nghiêng âm và đi qua điểm (0,3) trên trục y.
Đường thẳng y = -1/2x được biểu diễn bởi đường thẳng có góc nghiêng âm và đi qua gốc tọa độ (0,0).