Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách vẽ:
a) y=!x!+1
cho x=0 =>y=1 => A(0,1)
cho x=-6 => y=7 => B(-6,7)
cho x=6=> y=7 => C(6,7)
{A, B, C tùy ý}
nối A--> B và A--> C kéo dài ra => đthị !x! +1
b)y=2x-3
cho x =0 => y=-3 => E(0,-3)
cho y=0 => 0=2x-3=> x=3/2 => D (0,3/2)
nối ED kéo dài ra => đthị y=2x+3
c) xác định nghiệm
điểm giao nhau là N
Từ N kẻ đường vuông góc với Oy hoặc // với ox--> cắt Oy tai yn
Từ N kẻ đường vuông góc với Ox cắt Ox tai xn
Giá trị xn,yn, hay tọa độ điêm N (xn,yn)
nếu vẽ đúng tỷ lệ chuẩn
=>
xn=4
yn=5
Baif2:
A=\(12x^2+20x-8+9\)
=\(4\left(3x^2+5x-2\right)+9\)
=4.0+9
= 9
vậy A=............
hc tốt
\(3x^2+5x-2=0\)
\(\Leftrightarrow3x^2-x+6x-2=0\)
\(\Leftrightarrow x\left(3x-1\right)+2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)
\(a,\)Vì \(\left|x\right|=\frac{1}{3}\)
\(\Rightarrow x=\orbr{\begin{cases}\frac{1}{3}\\-\frac{1}{3}\end{cases}}\)
Với \(x=\frac{1}{3}\)
\(\Rightarrow y=3.\left(\frac{1}{3}\right)^2-2.\frac{1}{3}+1\)
\(\Rightarrow y=\frac{1}{3}-\frac{2}{3}+\frac{3}{3}\)
\(\Rightarrow y=\frac{2}{3}\)
Với \(x=-\frac{1}{3}\)
\(\Rightarrow y=3.\left(-\frac{1}{3}\right)^2-2.-\frac{1}{3}+1\)
\(\Rightarrow y=\frac{1}{3}+\frac{2}{3}+1\)
\(\Rightarrow y=1+1=2\)
\(b,y=1\)
\(\Rightarrow3x^2-2x+1=1\)
\(\Rightarrow x\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x=2\end{cases}}\)
\(\Rightarrow x=\orbr{\begin{cases}0\\\frac{2}{3}\end{cases}}\)
\(c,\)Tất cả các điểm trên
Lời giải:
a)
Áp dụng BĐT Cauchy-Schwarz:
\(4M=(3x^2+y^2)(3+1)\geq (3x+y)^2\)
\(\Leftrightarrow 4M\geq 1\Leftrightarrow M\geq \frac{1}{4}\)
Vậy \(M_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)
b) Với mọi \(x,y\in\mathbb{R}\Rightarrow (3x-y)^2\geq 0\)
\(\Leftrightarrow 9x^2+y^2-6xy\geq 0\Leftrightarrow (3x+y)^2-12xy\geq 0\)
\(\Leftrightarrow xy\leq \frac{(3x+y)^2}{12}=\frac{1}{12}\)
Vậy \(K_{\max}=\frac{1}{12}\Leftrightarrow x=\frac{1}{6};y=\frac{1}{2}\)
a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)
3/x^2-9=6/2(x+3)(x-3)
b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)
\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)
c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)
x/x-y=x^2/x(x-y)
e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x=1-3x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=1\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{2}{5}\end{matrix}\right.\)
b: Thay x=1/5 và y=2/5 vào y=kx+1, ta được:
1/5k+1=2/5
=>1/5k=-3/5
hay k=-3