Câu 23: (1,5 đ) Cho tam giác ABC , Các đường cao AD, BE, CF.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF~ΔABC

b:

Gọi giao điểm của AD,BE,CF là H

Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Ta có: \(\widehat{HFE}=\widehat{HAE}\)(AFHE nội tiếp)

\(\widehat{HFD}=\widehat{HBD}\)(BFHD nội tiếp)

mà \(\widehat{HAE}=\widehat{HBD}\left(=90^0-\widehat{ACB}\right)\)

nên \(\widehat{HFE}=\widehat{HFD}\)

=>\(\widehat{CFE}=\widehat{CFD}\)

=>FC là phân giác của góc EFD

2 tháng 4 2021

A B C D F E H I M N

a, Xét tam giác AFH và tam giác ADB ta có : 

^AFH = ^ADB = 900

^A _ chung 

Vậy tam giác AFH ~ tam giác ADB ( g.g )

b, Xét tam giác EHC và tam giác FHB ta có : 

^EHC = ^FHB ( đối đỉnh )

^CEH = ^BFH = 900

Vậy tam giác EHC ~ tam giác FHB ( g.g )

\(\Rightarrow\frac{EH}{FH}=\frac{HC}{HB}\Rightarrow EH.HB=HC.FH\)

c, 

2 tháng 4 2021

A B C D H E I P O M N

3 tháng 3 2018

kết bạn mình nghe

  
  
  
14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

 PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

BPQC là hình thang (dấu hiệu nhận biết hình thang)

b)Ta có :

Q là trung điểm PE

Q là trung điểm AC

 Q là trung điểm hai đường chéo của tứ giác AECP

Suy ra tứ giác AECP là hình bình hành 

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

⇒ PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)

3 tháng 5 2020

a, XÉt Δ AEF và ΔABC

AE/AF=ABAC⇒AE/AB=AF/AC

góc BACchung

=> Δ AEF ∼ ΔABC (đpcm)

b, mk ko hiểu

3 tháng 3 2019

a)cm  tam giác AFC  đồng dạng  tam giác AEB(gg) 

=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm

b) tam giác BDH đồng dạng tam giác BEC (gg) 

=> BH/BC =BD/BE hay BH .BE =BD.BC (1)

                                   t^2 CH.CF=DC.BC (2)

lấy (1)+(2) theo vế suy ra đpcm

c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C 

t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C

Do đó góc AEF= góc DEC 

mà góc AEF+góc FEB=90 ; góc DEC+BED =90 

 => góc FEB= góc BED 

 suy ra đpcm ................... (x-x)