Cho tam giác ABC cân tại A. Gọi E, D thứ tự thuộc các cạnh AB, AC sao cho AD = AE....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: Xét ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ED//BC

Xét tứ giác BEDC có ED//BC

nên BEDC là hình thang

mà BD=CE

nên BEDC là hình thang cân

11 tháng 11 2021

s

7

 

 
  
  

 

3 tháng 1 2017

Xét \(\Delta\)ABC có: D là trung điểm của AB

M là trung điểm của BC

\(\Rightarrow\)DM là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DM\)//AC hay DM//AE

Ta có : M là trung điểm của BC

E là trung điểm của CA

\(\Rightarrow\)ME là đường trung bình của \(\Delta\)ABC

\(\Rightarrow\)ME//AB hay ME//AD

Xét tứ giác ADME có: DM//AE(cmt)

ME//AD(cmt)

\(\Rightarrow\)ADME là hình bình hành

Nếu \(\Delta\)ABC cân tại A có đường trung tuyến AM

\(\Rightarrow\)AM đồng thời là tia phân giác của \(\widehat{A}\)

Xét hình bình hành ADME có đường chéo AM là tia phân giác của \(\widehat{A}\)(cmt)

\(\Rightarrow\)ADME là hình thoi

Nếu \(\Delta\)ABC vuông tại A

\(\Rightarrow\widehat{A}=90^0\)

Xét hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)

\(\Rightarrow\)ADME là hình chữ nhật

d/ Xét \(\Delta ABC\) vuông tại A, đường trung tuyến AM

\(\Rightarrow AM=\frac{1}{2}BC\)(Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1/2 cạnh huyền)

Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có:

BC2=AB2+AC2

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Leftrightarrow BC=\sqrt{6^2+8^2}\)

\(\Leftrightarrow BC=10\left(cm\right)\)

Khi đó:AM=\(\frac{1}{2}.BC=\frac{1}{2}.10=5\left(cm\right)\)

Vậy trong trường hợp tam giác ABC vuông tại A, AB=6cm và AC=8cm thì AM=5cm

18 tháng 7 2019

lNapkpo.png

Em thử thôi nha, dốt hình lắm:( TRình bày khá lủng củng, chị thông cảm ạ, có khi em sắp xếp thứ tự các đỉnh tương ứng của hai tam giác bằng nhau sai đấy)

a) Dễ chứng minh tam giác AED = tam giác AEB (g.c.g)

Suy ra AD = AB suy ra tam giác ADB cân tại A. Mặt khác dễ thấy A, E, O thẳng hàng mà AE là phân giác góc A nên AO cũng là phân giác góc A. Mặt khác tam giác ADB cân tại A có đường phân giác AO xuất phát từ đỉnh nên đồng thời cũng là đường trung trực do đó OA vuông góc với AE và OD = OB (1). Tức là AE vuông góc với DB.

b) Do tam giác AED = tam giác AEB nên ^ADE = ^ABE

Mặt khác ^BDE = ^ABD (so le trong, do AB// DE)

Từ (2) và (3) suy ra ^DBE = ^ADB, mà hai góc này ở vị trí so le trong nên AD//BE 

Từ đây ta có AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra AD = BE

c) Do AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra DE = AB(4). Ta cần chứng minh AB = EC.(5)

Điều này là hiển nhiên vì theo đề bài AE // BC và AB// EC (do giả thiết AB // DC và E thuộc DC) nên nó đúng theo tính chất đoạn chắn.

Do đó (5) đúng suy ra DE = EC (cùng bằng AB) hay E là trung điểm CD.

Còn lại em bí

a) Vì ∆ABC cân tại A 

=> ABC = ACB 

Mà DE // BC (gt)

=> EDCB là hình thang 

=> EDCB là hình thang cân 

b) Nối C => E 

Vì ED//BC (gt)

=> DEC = ECB ( so le trong) 

Rồi chứng minh cho CE là phân giác ACB 

=> ACE = BCE mà DEC = ECB 

=> DEC = DCE 

=> ∆DEC cân tại D 

=> DE = DC 

Mà hình thang EDCB cân 

=> EB =DC 

=> EB = ED (dpcm)

đẳng cấp ko vẽ hình