Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(|4x^2-1|\ge0\forall x\)
\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)
Mà \(|4x^2-1|+3x|2x-1|=0\)
=> I4x^2-1I và 3xI2x-1I=0
=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0
=> 4x^2=1 và x=0 hoặc 2x=1
=> x^2=1/4 và x=0 hoặc x=1/2
=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2
Vậy x=\(\pm\frac{1}{2}\); x=0
Câu 1:
\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)
\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)
\(\Leftrightarrow x=-2013\)
Câu 2:
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)
\(B=3a^2-6a+2017=3a^2-6a+3+2014\)
\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(a=1\)
Lại có \(a=b=c\Rightarrow a=b=c=1\)
Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)
Câu 5:
\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)
Với \(n=1;n=2\) (*) đúng
Giả sử (*) đúng với n=k khi đó (*) thành:
\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)
Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)
Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có:
\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)
Đẳng thức cần chứng minh tương đương với:
\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)
\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)
\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)
Theo nguyên lí quy nạp ta có Đpcm
Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(t=n^2+3n\) thì ta có:
\(A=t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)
a, \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x+3\right)\left(x-1\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)\left(x+3\right)}+\frac{18\left(x+1\right)}{\left(x+3\right)\left(x-1\right)\left(x+1\right)}=\frac{\left(2x-5\right)\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)\left(x+1\right)}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x+5x^2-5\)
\(\Leftrightarrow-x^2+14x+23=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7-6\sqrt{2}\\x=7+6\sqrt{2}\end{cases}}\)
Vậy...
0