\(2\sqrt{4}+3\sqrt{25}.\)
b) Giải BPT: 2x-10>0
c) Giả...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

1a)2\(\sqrt{4}\)+3\(\sqrt{25}\)=2.2+3.5=19

b)2x-10>0=>2x>10=>x>5

c)(3x-1)(x-2)-3(x2-4)=0=>(x-2)(3x-1-3(x+2))=0

=>-7.(x-2)=0=>x=2

2)a)với m=2 ta có hệ phương trình\(\left\{{}\begin{matrix}2x-y=3\\x+2y=4\end{matrix}\right.=>\left\{{}\begin{matrix}4x-2y=6\\x+2y=4\end{matrix}\right.\)

cộng 2 phương trình ta được:5x=10=>x=2

với x=2=>y=1

b)ta có:\(\dfrac{m}{1}\ne\dfrac{-1}{m}\left(m^2\ne-1\right)\)

điều này luôn xảy ra=>hệ phương trình luôn có một nghiệm duy nhất

câu 4:

a)ta có:BDC^=BEC^=90(góc nội tiếp chắn nửa đường tròn)

=>ADH^=AEH^=90(kề bù)

hay ADH^+AEH^=180=>ADHE nội tiếp

b)gọi H là giao điểm của IO vad DE

xét tam giac ODE có OD=OE => ODE cân

=> ODE^ = DEO^

xét tam giac HDO và HEO có

OH chung

ODE = OED

DHO=EHO=90 => tam giác HDO=HEO ( g-c-g)

=> DH= HE

=> H là trung điểtm của DE

=> IO vuông góc DE( quan hệ giữa đường kính và dây)

21 tháng 3 2017

Câu 1:

a) \(2\sqrt{4}+3\sqrt{25}\)= \(2\sqrt{2^2}+3\sqrt{5^2}\)=\(2.2+2.5=4+15=19\)

b) \(2x-10>0\Leftrightarrow2x>10\Leftrightarrow x>\dfrac{10}{2}\Leftrightarrow x>5\)

c) \(\left(3x-1\right)\left(x-2\right)-3\left(x^2-4\right)=0\\ \Leftrightarrow3x^2-6x-x+2-3x^2+12=0\)

\(\Leftrightarrow14-7x=0\\ \Leftrightarrow-7x=-14\\ \Leftrightarrow x=2\)

23 tháng 5 2017

a/ Ta có góc BDC=90 độ ( góc nt chăn nửa đường tròn)

suy ra góc ADH = 90 độ ( kề bù ) 

góc BEC= 90 độ ( góc nt chắn nửa đường tròn) 

suy ra góc AEH = 90 độ ( kề bù )

Tư giác ADHE có góc ADH + góc AEH = 90 độ + 90 độ = 180 độ 

Hại góc ở vị tri đối nhau . Do đó tứ giác ADHE nt đường tròn.

b/

c/Ta có góc BDC = 90 độ ( góc nt chắn nửa đt)

góc BEC = 90 độ ( góc nt chắn 1/2 đt)

Tứ giác BDEC có hai đỉnh kề D và E cùng nhìn BC dưới một góc vuông . Do đó tứ giác BDEC nt 

suy ra góc BDE + góc BCE = 180 độ      (1)

Mặt khác : góc ADE + góc BDE = 180 độ ( kề bù ) (2) 

(1) (2) suy ra góc ADE = góc ACB 

Xét tam giác ADE và tam giác ACB có 

goc BAC chung 

goc ADE = góc BAC (cmt)

suy ra tam giác ADE đồng dạng tam giác ACB (g.g)

nên AD/AC = AE/AB

hay AD.AB =AE.AC.

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


1. giải hệ phương trình sau: \(\hept{\begin{cases}2x-3\left|y\right|=4\\3x-y=17\end{cases}}\).4. a) Vẽ đồ thị của các hàm số y=|x−1| và y=|x+2| trên cùng 1 hệ trục xOyb) Chứng tỏ phương trình |x−1|=|x+2| có một nghiệm duy nhất. 5.Một người dự định rào xung quanh một miếng đất hình chữ nhật có diện tích 1.600m2, độ dài hai cạnh là x mét và y mét. Hai cạnh kề nhau rào bằng gạch, còn hai cạnh kia...
Đọc tiếp

1. giải hệ phương trình sau: \(\hept{\begin{cases}2x-3\left|y\right|=4\\3x-y=17\end{cases}}\)

.

4. 
a) Vẽ đồ thị của các hàm số y=|x−1| và y=|x+2| trên cùng 1 hệ trục xOy

b) Chứng tỏ phương trình |x−1|=|x+2| có một nghiệm duy nhất. 
5.
Một người dự định rào xung quanh một miếng đất hình chữ nhật có diện tích 1.600m2, độ dài hai cạnh là x mét và y mét. Hai cạnh kề nhau rào bằng gạch, còn hai cạnh kia rào bằng đá. 
Mỗi mét rào bằng gạch giá 200.000 đồng, mỗi mét rào bằng đá giá 500.000 đồng. 
a) Tính giá tiền dự định rào ( theo x và y). 
b) Người ấy có 55 triệu đồng, hỏi số tiền ấy có đủ để rào không ? 
Câu 6
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại 
H. AO kéo dài cắt (O) tại M. 
a) Chứng minh tứ giác AEHF là tứ giác nội tiếp và tứ giác BHCM là hình bình hành. 
b) Chứng minh AO ⊥ EF. 
c) Chứng minh rằng: 
SABC \(\le\frac{R^2+p^2}{4}\), trong đó SABC là diện tích tam giác ABC và p là chu vi của tam giác DEF.

giải hộ em đề này với ạ!!!

0
1.   Cho hpt :  \(\hept{\begin{cases}mx+y=3\\9x+my=2m+3\end{cases}}\)a) Giải pt với m = 2b) Tìm m để pt có 1 nghiệm, vô nghiệm, vô số nghiệmc) Tìm m để pt có nghiệm dươngđ) Tìm m để pt có nghiệm nguyên âm 2. Từ điểm M nằm ngoài (O) kẻ cát tuyến MCD. Tiếp tuyến với (O) tại C,D cắt nhau tại A. Gọi H là hình chiếu của A trên OM. Chứng minh:a) 5 điểm C,Đ,O,A,H cùng thuộc 1 đường trònb) MH.MO=MC.MDc) Kẻ...
Đọc tiếp

1.   Cho hpt :  \(\hept{\begin{cases}mx+y=3\\9x+my=2m+3\end{cases}}\)

a) Giải pt với m = 2

b) Tìm m để pt có 1 nghiệm, vô nghiệm, vô số nghiệm

c) Tìm m để pt có nghiệm dương

đ) Tìm m để pt có nghiệm nguyên âm 

2. Từ điểm M nằm ngoài (O) kẻ cát tuyến MCD. Tiếp tuyến với (O) tại C,D cắt nhau tại A. Gọi H là hình chiếu của A trên OM. Chứng minh:
a) 5 điểm C,Đ,O,A,H cùng thuộc 1 đường tròn
b) MH.MO=MC.MD
c) Kẻ tiếp tuyến MB. Chứng minh: MH.MO=MB^2
d) A,H,B thẳng hàng
e) AH cắt (O) tại E.Cm ME là tiếp tuyến của (O)
3. Cho tam giác ABC nhọn, nối tiếp đường tròn tâm O. Từ B,C kẻ tiếp tuyến với đường tròn, chúng cắt nhau tại D. Từ D kẻ cát tuyến song song với AB cắt đường tròn tại E,F và cắt AC tại I.
a) Cm góc DOC bằng góc BAC
b) 4 điểm O,I,D,C nằm trên 1 đường tròn
c) Cm IE=IF
d) ID là tia phân giác góc BIC
e) Cho B,C cố định, khi A chuyển động trên cung BC lớn thì I di chuyển trên đường nào ?

  giúp mk vs mn, mk đg cần gấp ............

1
18 tháng 4 2018

mn ơi giúp mk vs

Câu 1 Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\left(I\right)\) (với m là tham số) a) Giải hệ phương trình (I) có nghiệm duy nhất với mọi m.Tìm nghiệm duy nhất đó theo m. Câu 2 Cho Parabol (P): \(y=x^2\) và đường thẳng (d) có phương trình: \(y=2\left(m+1\right)x-3m+2\) a) Tìm tọa độ giao điểm của (P) và (d) với m=3 b) Chứng minh (P) và (d) luôn cắt nhau tại hai điểm...
Đọc tiếp

Câu 1
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\left(I\right)\) (với m là tham số)

a) Giải hệ phương trình (I) có nghiệm duy nhất với mọi m.Tìm nghiệm duy nhất đó theo m.

Câu 2
Cho Parabol (P): \(y=x^2\) và đường thẳng (d) có phương trình: \(y=2\left(m+1\right)x-3m+2\)
a) Tìm tọa độ giao điểm của (P) và (d) với m=3
b) Chứng minh (P) và (d) luôn cắt nhau tại hai điểm phân biệt A,B với mọi m
c) Gọi \(x_1;x_2\) là hoành độ giao điểm A,B. Tìm m để \(x_1^2+x_1^2=20\)
Câu 3 Cho đường tròn (O;R) dây DE < 2R. Trên tia đối DE lấy điểm A, qua A kẻ 2 tiếp tuyến AB và AC với đường tròn (O), (B,C là tiếp điểm). Gọi H là trung điểm DE, K là giao điểm của BC và DE.
a) Chứng minh tứ giác ABOC nội tiếp
b) Gọi (I) là đường tròn ngoại tiếp tứ giác ABOC. Chứng minh rằng H thuộc đường tròn (I) và HA là phân giác BHC.
c) Chứng minh rằng \(\dfrac{2}{AK}=\dfrac{1}{AD}+\dfrac{1}{AE}.\)
Câu 5
Cho ba số thực dương a,b,c thỏa mãn:
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\).
Tìm giá trị lớn nhất của biểu thức:
\(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2a^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}.\)
Đề của Phú Thọ năm 2015-2016 ạ
Các cậu bơi vào đây thảo luận đi

6
16 tháng 3 2017

Bài Bất đẳng thức phân thức thứ 2 của tổng P ở phần mẫu sai đề

16 tháng 3 2017

Câu 1:

\(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3-my\right)-3y=-5\\x=3-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-m^2y-6+2my-3y=-5\\x=3-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-2m+3\right)y=3m-1\left(1\right)\\x=3-my\left(2\right)\end{matrix}\right.\)

Ta có: \(m^2-2m+3=\left(m-1\right)^2+2>0\forall m\) nên \(pt(1)\) có nghiệm duy nhất \(\forall m\)

Suy ra hệ phương trình có nghiệm duy nhất \(\forall m\)

Từ \((1)\) ta có \(y=\dfrac{3m-1}{m^2-2m+3}\) thay vào \((2)\) ta có \(x=\dfrac{9-5m}{m^2-2m+3}\)

Câu 2:

Thay \(m=3\) ta có \((d)\):\(y=8x-7\)

Phương trình hoành độ giao điểm \((P)\)\((d)\) khi \(m=3\)

\(x^2=8x-7\Leftrightarrow x^2-8x+7=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=7\end{matrix}\right.\)

Tọa độ giao điểm \((P)\)\((d)\)\((1;1);(7;49)\)

b)Xét phương trình hoành độ giao điểm \((P)\)\((d)\):

\(x^2-2(m+1)x+3m-2=0(1)\)

\(\Delta=m^2+2m+1-3m+2=m^2-m+3=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)

Nên pt \((1)\) có hai nghiệm phân biệt \(\forall m\)

Suy ra \((P)\)\((d)\) luôn cắt nhau tại hai điểm phân biệt \(A,B\) với mọi \(m\)

c)Ta có \(x_1;x_2\) là nghiệm của pt \((1)\) do \(\Delta>0\forall m\) theo định lý Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)

\(x^2_1+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

Thay vào hệ thức Vi-ét ta có:

\(\left(2m+2\right)^2-2\left(3m-2\right)=20\Leftrightarrow2m^2+m-6=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{3}{2}\end{matrix}\right.\)

11 tháng 4 2017

Câu 1:

a/ Ta có: \(2\sqrt{9}+3\sqrt{16}=2.3+3.4=18\)

b/ Phương trình:

3x-15=0

\(\Leftrightarrow3x=15\)

\(\Leftrightarrow x=5\)

Vậy phương trình có S=\(\left\{5\right\}\)

c/ \(x^2+\left(x-1\right)\left(3-x\right)>0\)

\(\Rightarrow x^2+3x-x^2-3+x>0\)

\(\Rightarrow4x-3>0\)

\(\Rightarrow x>\dfrac{3}{4}\)

11 tháng 4 2017

Câu 2 vs câu 3 đợi mik chút...mik có vc bận