K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

Lời giải:

Gọi chiều dài và chiều rộng hcn là a,ba,b (mét)

Diện tích: ab=900ab=900

Rào 2 cạnh kề nhau bằng đá và 2 cạnh kia rào bằng gỗ nghĩa là người ta rào a+ba+b mét đá và a+ba+b mét gỗ

Do đó số tiền phải chi trả là:

2,5(a+b)+1(a+b)=3,5(a+b)2,5(a+b)+1(a+b)=3,5(a+b) (triệu đồng)

Ta thấy: a2+b2≥2ab⇒(a+b)2≥4aba2+b2≥2ab⇒(a+b)2≥4ab

⇒(a+b)2≥4.900⇒a+b≥60⇒(a+b)2≥4.900⇒a+b≥60

Do đó 3,5(a+b)≥2103,5(a+b)≥210 (triệu), tức là số tiền tối thiểu phải chi là 210210, suy ra với 200200 triệu đồng thì không đủ

1. giải hệ phương trình sau:\(\left\{{}\begin{matrix}2x-3\left|y\right|=4\\3x-y=17\end{matrix}\right.\) 2. tìm các số nguyên dương n sao cho n2+1 chia hết cho n+1 3.Giả sử x1, x2 là hai nghiệm của phương trình: x 2 – 4x + 1 = 0. Tính x1 2 + x2 2 , x1 3 + x2 3 và x1 5 + x2 5 ( không sử dụng máy tính cầm tay để tính). 4. a) Vẽ đồ thị của các hàm số y=\(\left|x-1\right|\) và y=\(\left|x+2\right|\) trên cùng 1 hệ trục xOy b) Chứng tỏ phương...
Đọc tiếp

1. giải hệ phương trình sau:\(\left\{{}\begin{matrix}2x-3\left|y\right|=4\\3x-y=17\end{matrix}\right.\)

2. tìm các số nguyên dương n sao cho n2+1 chia hết cho n+1

3.Giả sử x1, x2 là hai nghiệm của phương trình: x 2 – 4x + 1 = 0. Tính x1 2 + x2 2 , x1 3 + x2 3 và
x1 5 + x2 5 ( không sử dụng máy tính cầm tay để tính).

4.
a) Vẽ đồ thị của các hàm số y=\(\left|x-1\right|\) và y=\(\left|x+2\right|\) trên cùng 1 hệ trục xOy

b) Chứng tỏ phương trình \(\left|x-1\right|=\left|x+2\right|\) có một nghiệm duy nhất.
5.
Một người dự định rào xung quanh một miếng đất hình chữ nhật có diện tích 1.600m2, độ
dài hai cạnh là x mét và y mét. Hai cạnh kề nhau rào bằng gạch, còn hai cạnh kia rào bằng đá.
Mỗi mét rào bằng gạch giá 200.000 đồng, mỗi mét rào bằng đá giá 500.000 đồng.
a) Tính giá tiền dự định rào ( theo x và y).
b) Người ấy có 55 triệu đồng, hỏi số tiền ấy có đủ để rào không ?
Câu 6
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại
H. AO kéo dài cắt (O) tại M.
a) Chứng minh tứ giác AEHF là tứ giác nội tiếp và tứ giác BHCM là hình bình hành.
b) Chứng minh AO ⊥ EF.
c) Chứng minh rằng:
SABC \(\frac{R^2+p^2}{4}\) , trong đó SABC là diện tích tam giác ABC và p là chu vi của tam giác DEF.

giải hộ em đề này với ạ!!!

0

a) xét tứ giác ABOC có

\(\widehat{ABO}=\widehat{ACO}=90^0\)(tiếp tuyến AB,AC)

=> tứ giác ABOC nội tiếp

b) Xét tam giác  ABH zà tam giác AOB có

\(\hept{\begin{cases}\widehat{ABO}chung\\\widehat{BHA}=\widehat{OBA}=90^0\left(BC\perp CA\left(tựCM\right)\right)\end{cases}}\)

=> \(\Delta ABH~\Delta AOB\left(g.g\right)\)

\(=>\frac{AB}{AO}=\frac{AH}{AB}=>AH.AB=AB.AB\left(1\right)\)

xét tam giác ABD zà tam giác AEB có

\(\widehat{BAE}chung\)

\(\widehat{ABD}=\widehat{BEA}\)(cùng chắn \(\widebat{BD}\))

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)

\(=>\frac{AB}{AE}=\frac{AD}{AB}=>AE.AD=AB.AB\left(2\right)\)

từ 1 zà 2 suy ra

AH.AO=AE.AD(dpcm)

=>\(\Delta ADH~\Delta AOE\)

\(=>\widehat{DEO}=\widehat{DHA}\)(2 góc tương ứng

lại có 

\(\widehat{DHA}+\widehat{DHO}=180^0=>\widehat{DEO}+\widehat{DHO}=180^0\)

=> tứ giác DEOH nội tiếp

c)  Có tam giá AOM zuông tại O , OB là đường cao

\(=>\frac{1}{OA^2}+\frac{1}{OM^2}=\frac{1}{OB^2}=\frac{1}{R^2}\)

\(\frac{1}{OA.OM}=\frac{1}{OA}.\frac{1}{OM}\le\frac{1}{\frac{OA^2+OM^2}{2}}=\frac{1}{\frac{R^2}{2}}=\frac{1}{2R^2}\left(a,b\le\frac{a^2+b^2}{2}\right)\)

=>\(OA.OM\ge2R^2=>MinS_{AMN}=2R^2\)

dấu = xảy ra khi OA=OM

=> tam giác OAM zuông cận tại O

=> góc A = độ

bài 2 

ra kết quả là \(6\pi m^2\)

nếu cần giải bảo mình 

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

a: Xét (O) có

ΔABM nội tiếp

AM là đường kính

Do đó: ΔABM vuông tại B

=>BM\(\perp\)AB

mà CH\(\perp\)AB

nên CH//BM

Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

=>AC\(\perp\)CM

mà BH\(\perp\)AC

nên BH//CM

Xét tứ giác BHCM có

BH//CM

BM//CH

Do đó: BHCM là hình bình hành

b:

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\)

Ta có: \(\widehat{ABC}+\widehat{BAN}=90^0\)(ΔADB vuông tại D)

\(\widehat{AMC}+\widehat{MAC}=90^0\)(ΔACM vuông tại C)

mà \(\widehat{ABC}=\widehat{AMC}\)

nên \(\widehat{BAN}=\widehat{MAC}\)

Xét (O) có

ΔANM nội tiếp

AM là đường kính

Do đó: ΔANM vuông tại N

=>AN\(\perp\)NM

mà AN\(\perp\)BC

nên BC//NM

Ta có: \(\widehat{CHD}=\widehat{ABC}\)(=90 độ-góc FCB)

\(\widehat{ABC}=\widehat{ANC}\)

Do đó: \(\widehat{CHD}=\widehat{ANC}\)

=>ΔCHN cân tại C

=>CH=CN

mà CH=BM

nên BM=CN

Xét tứ giác BCMN có BC//MN

nên BCMN là hình thang

Hình thang BCMN có BM=CN

nên BCMN là hình thang cân

20 tháng 4 2020

Bài 1 : 

Nửa chu vi hình chữ nhật là: 50:2=25 (m)

Gọi chiều rộng là x (0<x<12,5)

=> chiều dài là: 25 -x (m)

Diện tích là: x (25-x)

Ta có phương trình: 

\(x\left(25-x\right)=144\)

\(\Rightarrow-x^2+25x=144\)

\(\Rightarrow x^2-25x+144=0\)

\(\Rightarrow x^2-9x-16x+144=0\)

\(\Rightarrow\left(x-9\right)\left(x-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\)

Vậy chiều rộng là 9m và chiều dài là 25-9=16m