Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài Bất đẳng thức phân thức thứ 2 của tổng P ở phần mẫu sai đề
Câu 1:
\(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3-my\right)-3y=-5\\x=3-my\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m-m^2y-6+2my-3y=-5\\x=3-my\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-2m+3\right)y=3m-1\left(1\right)\\x=3-my\left(2\right)\end{matrix}\right.\)
Ta có: \(m^2-2m+3=\left(m-1\right)^2+2>0\forall m\) nên \(pt(1)\) có nghiệm duy nhất \(\forall m\)
Suy ra hệ phương trình có nghiệm duy nhất \(\forall m\)
Từ \((1)\) ta có \(y=\dfrac{3m-1}{m^2-2m+3}\) thay vào \((2)\) ta có \(x=\dfrac{9-5m}{m^2-2m+3}\)
Câu 2:
Thay \(m=3\) ta có \((d)\):\(y=8x-7\)
Phương trình hoành độ giao điểm \((P)\) và \((d)\) khi \(m=3\) là
\(x^2=8x-7\Leftrightarrow x^2-8x+7=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=7\end{matrix}\right.\)
Tọa độ giao điểm \((P)\) và \((d)\) là \((1;1);(7;49)\)
b)Xét phương trình hoành độ giao điểm \((P)\) và \((d)\):
\(x^2-2(m+1)x+3m-2=0(1)\)
\(\Delta=m^2+2m+1-3m+2=m^2-m+3=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)
Nên pt \((1)\) có hai nghiệm phân biệt \(\forall m\)
Suy ra \((P)\) và \((d)\) luôn cắt nhau tại hai điểm phân biệt \(A,B\) với mọi \(m\)
c)Ta có \(x_1;x_2\) là nghiệm của pt \((1)\) do \(\Delta>0\forall m\) theo định lý Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)
\(x^2_1+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
Thay vào hệ thức Vi-ét ta có:
\(\left(2m+2\right)^2-2\left(3m-2\right)=20\Leftrightarrow2m^2+m-6=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{3}{2}\end{matrix}\right.\)
Câu 1:
a/ Ta có: \(2\sqrt{9}+3\sqrt{16}=2.3+3.4=18\)
b/ Phương trình:
3x-15=0
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
Vậy phương trình có S=\(\left\{5\right\}\)
c/ \(x^2+\left(x-1\right)\left(3-x\right)>0\)
\(\Rightarrow x^2+3x-x^2-3+x>0\)
\(\Rightarrow4x-3>0\)
\(\Rightarrow x>\dfrac{3}{4}\)
a) Trong tam giác OIK có:
|OK −− OI| < IK < |OK + OI| hay ∣R−r∣<IK<∣R+r∣∣R−r∣<IK<∣R+r∣.
Vậy hai đường tròn (I) và (K) luôn cắt nhau.
b) Dễ thấy tứ giác OMCN là hình chữ nhật (Tứ giác có 3 góc vuông).
Mà OM = OI + IM = OI + OK;
ON = OK + KN = OK + OI.
Vậy OM = ON hay hình chữ nhật OMCN là hình vuông.
c) Gọi giao điểm của BK và MC là L và giao điểm của AB với MC là P.
Tứ giác IBKO là hình chữ nhật. Suy ra IB = OK.
Tứ giác MLBI là hình vuông nên ML = BI, BL = OK.
Từ đó suy ra ΔBLP=ΔKOIΔBLP=ΔKOI. Vì vậy LP = OI.
Suy ra MP = ON = MC. Hay điểm C trùng với P.
Suy ra ba điểm A, B, C thẳng hàng.
d) Nếu OI + OK = a (không đổi) thì OM = MC = a không đổi. Suy ra điểm C cố định.
Vậy đường thẳng AB luôn đi qua điểm C cố định.
Câu 1
a)
\(A=\dfrac{1}{3+2\sqrt{2}}+\dfrac{1}{3-2\sqrt{2}}=\dfrac{\left(3-2\sqrt{2}\right)+\left(3+2\sqrt{2}\right)}{\left(3\right)^2-\left(2\sqrt{2}\right)^2}=\dfrac{6}{1}=6\)