Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải cách lớp 8
Từ D kẻ DE⊥AC(E∈BC)
Xét ΔADBvà ΔEBD
^ADB=^EBD
BD cạnh chung
^ABD=^EBD
⇒ΔABD=ΔEBD(g−c−g)
⇒AD=ED
⇒^DAE=^DEA= 45 độ ( 1 )
Ta thấy : Tứ giác ADEH là tứ giác nội tiếp vì góc AHE + góc ADE = 180 độ ( 2 )
Từ ( 1 ) và ( 2 ) suy ra góc AHD = góc DHE = 90 độ / 2 = 45 độ
⇒^BHD=^DHE( = 45 độ )
⇒HD // AB ( 2 góc so le trong ) ( đpcm )
Vẽ góc ngoài CAx của ∆ABC tại đỉnh A
Ta thấy HAx là góc ngoài ∆BAH
=> hAx = ABH + AHB = ABC + 90°
=> HAx = 2( ABD + 45°) (1)
Vì CAx là góc ngoài ∆BAD
=> CAx = ABD + BDA = ABD + 45° (2)
Từ (1) và (2)
=> CAx = \(\frac{1}{2}\)HAx
=> AC là phân giác HAx
Xét ∆ABH ta có :
BD là phân giác trong
AD là phân giác ngoài
=> HD là phân giác AHC
=> AHD = \(\frac{1}{2}AHC=45°\)(3)
Xét ∆BAH ta có :
AHB + ABH + BAH = 180°
=> BAH = 45° (4)
Từ (3) và (4) ta có :
=> AHB = BAH = 45°
Mà 2 góc này ở vị trí so le trong
=> HD//AB
1) Gọi số viên bi của ba bạn Minh, Hùng, Dũng lần lượt là a,b,c
Theo đề ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c-b=4
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-b}{5-4}=4\)
Do đó:
\(\frac{a}{3}=4\Rightarrow a=3.4=12\)
\(\frac{b}{4}=4\Rightarrow b=4.4=16\)
\(\frac{c}{5}=4\Rightarrow c=5.4=20\)
Vậy số viên bi của minh là.........
hùng là.............
dũng là.............
a) Gọi số bi của ba bạn Minh, Hùng, Dũng là a ; b; c \(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-b}{5-4}=\frac{4}{1}=4\)
\(\Rightarrow\frac{a}{3}=4\Leftrightarrow a=12\) \(\frac{b}{4}=4\Rightarrow b=16\) \(\frac{c}{5}=4\Rightarrow c=20\)
b) Gọi độ dài 3 cạnh của tam giác là a ; b ; c \(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\)
Nửa chu vi tam giác là \(56\div2=28\left(cm\right)\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có : \(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{2+5+7}=\frac{28}{14}=2\)
\(\Rightarrow\frac{a}{2}=2\Rightarrow a=4\) \(\Rightarrow\frac{b}{5}=2\Rightarrow b=10\) \(\Rightarrow\frac{c}{7}=2\Leftrightarrow c=14\)
c) Gọi số bi ba bạn Minh, Hùng, Dũng là a ; b ; c \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{3}=\frac{a+b+c}{2+3+3}=\frac{50}{8}=\frac{25}{4}\)
\(\Rightarrow\frac{a}{2}=\frac{25}{4}\Rightarrow a=\frac{25.2}{4}=\frac{50}{4}=\frac{25}{2}\)
\(\Rightarrow\frac{b}{3}=\frac{c}{3}=\frac{25}{4}\Rightarrow b=c=\frac{25.3}{4}=\frac{75}{4}\)
Câu 5:
Gọi số điểm tốt của ba lớp 7A, 8A, 9A lần lượt là \(a,b,c\)(tốt) \(a,b,c\inℕ^∗\).
Vì số điểm tốt của ba chi đội lần lượt tỉ lệ với \(9,7,8\)nên \(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}\).
Tổng số điểm tốt là \(120\)nên \(a+b+c=120\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}=\frac{a+b+c}{9+7+8}=\frac{120}{24}=5\)
\(\Leftrightarrow\hept{\begin{cases}a=5.9=45\\b=5.7=35\\b=5.8=40\end{cases}}\).
Câu 4:
Gọi độ dài ba cạnh của tam giác lần lượt là \(a,b,c\left(cm\right)\)\(a,b,c>0\).
Các cạnh của tam giác có số đo tỉ lệ với \(3,4,5\)nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\).
Chu vi của tam giác là \(13,2cm\)nên \(a+b+c=13,2\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=1,1\)
\(\Leftrightarrow\hept{\begin{cases}a=1,1.3=3,3\\b=1,1.4=4,4\\c=1,1.5=5,5\end{cases}}\)
Câu 1: Gọi số bi của 3 bạn lần lượt là a, b, c (a, b, c ∈ N*)
Theo đề ra ta có: 2a=3b=6c
Hay \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}\)và a+b+c=132
Theo t/c của dãy tỉ số bằng nhau ta có
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}=\frac{132}{1}=132\)
⇒a=66, b=44, c=22
Vậy số bi của ba bạn lần lượt là 66, 44 và 22 viên bi