Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{x-y}{19-21}=\dfrac{4}{-2}=-2\)
DO đó: x=-38; y=-42
b: Ta có: 3x=5y=7z
nên 3x/105=5y/105=7z/105
=>x/35=y/21=z/15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y-z}{35+21-15}=\dfrac{41}{41}=1\)
Do đó: x=35;y=21; z=15
Ta có: \(3x=5y=7z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{5}}=\dfrac{z}{\dfrac{1}{7}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{5}}=\dfrac{z}{\dfrac{1}{7}}=\dfrac{x+y-z}{\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}}=\dfrac{41}{\dfrac{41}{105}}=105\)
+) \(\dfrac{x}{\dfrac{1}{3}}=105\Rightarrow x=\dfrac{1}{3}.105=35\)
+) \(\dfrac{y}{\dfrac{1}{5}}=105\Rightarrow x=\dfrac{1}{5}.105=21\)
+) \(\dfrac{z}{\dfrac{1}{7}}=105\Rightarrow z=\dfrac{1}{7}.105=15\)
Vậy \(x=35;y=21;z=15\)
Ta có 3x=5y=7z suy ra \(\dfrac{x}{\dfrac{1}{3}}\)=\(\dfrac{y}{\dfrac{1}{5}}\)=\(\dfrac{z}{\dfrac{1}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\dfrac{x}{\dfrac{1}{3}}=\) \(\dfrac{y}{\dfrac{1}{5}}=\dfrac{z}{\dfrac{1}{7}}\)\(=\dfrac{x}{\dfrac{1}{3}}+\dfrac{y}{\dfrac{1}{5}}+\dfrac{z}{\dfrac{1}{7}}=\dfrac{x+y-z}{\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}}=\dfrac{41}{\dfrac{41}{105}}=105\)suy ra : x = 105 . \(\dfrac{1}{3}\)= 35
y = 105 . \(\dfrac{1}{5}\)= 21
z = 105 . \(\dfrac{1}{7}\)=15
Vậy : ...
có 3x=5y=7z
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{x}{15}\) (z/15 nha, ko phải x/15)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y-z}{35+21-15}=\frac{41}{41}=1\)
=>\(\frac{x}{35}=1\Rightarrow x=35\)
\(\frac{y}{21}=1\Rightarrow y=21\)
\(\frac{z}{15}=1\Rightarrow z=15\)
vậy...........
a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16
Áp dụng t/c của dãy tỉ số = nhau , ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)
Vậy x = 12 ; y = 20 ; z = -8
a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)
\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)
b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)
c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)
Vậy x = 12 ; y = 15 ; z = 18
hoặc x = -12 ; y = -15 ; z = -18
1/ Vì x,y,z tỉ lệ với 3,5,7 nên \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x-z}{3-7}=\frac{12}{-4}=-3\)
=> x/3 = -3 => x = -9
y/5 = -3 => y = -15
z/7 = -3 => z = -21
Vậy x=-9,y=-15,z=-21
2/
Ta có: 3x = 4y => x/4 = y/3
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{21}{7}=3\)
=> x/4 = 3 => x = 12
y/3 = 3 => y = 9
Vậy x=12,y=9
3/
Ta có: 5a = 2b => a/2 = b/5 => 3a/6 = 2b/10
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{3a}{6}=\frac{2b}{10}=\frac{3a+2b}{6+10}=\frac{32}{16}=2\)
=> a/2 = 2 => a = 4
b/5 = 2 => b = 10
Vậy a=4,b=10
1) +) H = \(\frac{9}{\sqrt{n-5}}\); ĐK: \(n>5\)
Muốn \(H=\frac{9}{\sqrt{n-5}}\) có giá trị nguyên thì \(\sqrt{n-5}⋮9\)hay \(\sqrt{n-5}\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\sqrt{n-5}\) | -9 | -3 | -1 | 1 | 3 | 9 |
\(n\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | 6 | 14 | 86 |
Vậy n = 6; n = 14; n = 86 thì H = \(\frac{9}{\sqrt{n-5}}\)có giá trị nguyên
+) P = \(\frac{3n+2}{n-1}\); ĐK : \(n\ne1\)
Ta có: \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Muốn P = \(3+\frac{5}{n-1}\)nhận giá trị nguyên thì \(n-1⋮5\)hay \(n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | -5 | -1 | 1 | 5 |
\(n\) | -4 | 0 | 2 | 6 |
2) a) \(\hept{\begin{cases}21x=19y\\x-y=4\left(1\right)\end{cases}}\)
Nhân hai vế cùa (1) cho 21, ta có:
21x - 21y = 84
<=> 19y - 21y = 84
<=> -2y = 84
<=> y = -42
thay y = -42 vào (1) ta có: x - (-42) = 4 <=> x = -38
Vậy x = -38; y = -42
b) \(\hept{\begin{cases}3x=5y=7z\\x+y-z=41\end{cases}}\)
ta có: \(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}=\frac{x+y-z}{\frac{1}{3}+\frac{1}{5}-\frac{1}{7}}=\frac{41}{\frac{41}{105}}=105\)
+)\(\frac{x}{\frac{1}{3}}=105\Rightarrow x=105\cdot\frac{1}{3}=35\)
+)\(\frac{y}{\frac{1}{5}}=105\Rightarrow y=105\cdot\frac{1}{5}=21\)
+)\(\frac{z}{\frac{1}{7}}=105\Rightarrow x=105\cdot\frac{1}{7}=15\)
Vậy x = 35; y =21; z = 15
Bài 1:
a) Để H có giá trị nguyên
=>9 chia hết cho √n-5
=>√n-5 thuộc Ư(9)
Ta có:
Ư(9)={1;3;9}
Ta có bảng sau:
√n-5 | 1 | 3 | 9 |
n | 6 | 14 | 86 |
KL | tm | tm | tm |
Vậy...
b) Để P có giá trị nguyên
=>3n+2 chia hết cho n-1
Ta có:
3n+2=3(n-1)+5
Vì 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)
Ta có: Ư(5)={-1;1;-5;5}
Ta có bảng sau :
n-1 | -1 | 1 | -5 | 5 |
n | 0 | 2 | -4 | 6 |
KL | tm | tm | tm | tm |
Vậy...
Bài 2:
a) Ta có:
21x=19y
=>x/19=y/21
Áp dụng tc của DTSBN
=>x/19=y/21=(x-y) /(19-21)=4/-2=-2
=>x/19=-2=>x=-38
=>y/21=-2=>y=-42
Vậy...
b) Ta có :
3x=5y=7z
=>x/35=y/21=z/15
Áp dụng tc của DTSBN
=>x/35=y/21=z/15=(x+y-z) /(35+21-15)=41/41=1
=>x/35=1=>x=35
=>y/21=1=>y=21
=>z/15=1=>z=15
Vậy...
\(x:y=19:21\Leftrightarrow\dfrac{x}{y}=\dfrac{19}{21}\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{19}\)
Áp dụng t.c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{21}=\dfrac{y}{19}=\dfrac{x-y}{21-19}=\dfrac{4}{2}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\\\dfrac{y}{19}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=42\\y=38\end{matrix}\right.\)
Vậy ...
b/ \(3x=5y=7z\)
\(\Leftrightarrow\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}\)
\(\Leftrightarrow\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
Áp dụng t.c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{41}{71}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{35}=\dfrac{41}{71}\\\dfrac{y}{21}=\dfrac{41}{71}\\\dfrac{z}{15}=\dfrac{41}{71}\end{matrix}\right.\) (tự tính yieeps)
Vậy ..
Kết quả phần b mà bạn ghi tự tính , mik ghi rồi , kết quả dài lắm