K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

1)  +) H = \(\frac{9}{\sqrt{n-5}}\); ĐK: \(n>5\)

Muốn  \(H=\frac{9}{\sqrt{n-5}}\)  có giá trị nguyên thì \(\sqrt{n-5}⋮9\)hay \(\sqrt{n-5}\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\sqrt{n-5}\)-9-3-1139
\(n\)\(\varnothing\)\(\varnothing\)\(\varnothing\)61486

Vậy n = 6; n = 14; n = 86 thì H = \(\frac{9}{\sqrt{n-5}}\)có giá trị nguyên

+) P = \(\frac{3n+2}{n-1}\); ĐK : \(n\ne1\)

Ta có: \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)

Muốn P = \(3+\frac{5}{n-1}\)nhận giá trị nguyên thì \(n-1⋮5\)hay \(n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(n-1\)-5-115
\(n\)-4026

2) a) \(\hept{\begin{cases}21x=19y\\x-y=4\left(1\right)\end{cases}}\)

Nhân hai vế cùa (1) cho 21, ta có:

21x - 21y = 84

<=> 19y - 21y = 84

<=> -2y = 84

<=> y = -42

thay y = -42 vào (1) ta có: x - (-42) = 4 <=> x = -38

Vậy x = -38; y = -42

b) \(\hept{\begin{cases}3x=5y=7z\\x+y-z=41\end{cases}}\)

ta có: \(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}=\frac{x+y-z}{\frac{1}{3}+\frac{1}{5}-\frac{1}{7}}=\frac{41}{\frac{41}{105}}=105\)

+)\(\frac{x}{\frac{1}{3}}=105\Rightarrow x=105\cdot\frac{1}{3}=35\)

+)\(\frac{y}{\frac{1}{5}}=105\Rightarrow y=105\cdot\frac{1}{5}=21\)

+)\(\frac{z}{\frac{1}{7}}=105\Rightarrow x=105\cdot\frac{1}{7}=15\)

Vậy x = 35; y =21; z = 15

17 tháng 11 2019

Bài 1:

a) Để H có giá trị nguyên

=>9 chia hết cho √n-5

=>√n-5 thuộc Ư(9)

Ta có:

Ư(9)={1;3;9}

Ta có bảng sau:

√n-5139
n61486
KLtmtmtm

Vậy... 

b) Để P có giá trị nguyên 

=>3n+2 chia hết cho n-1

Ta có:

3n+2=3(n-1)+5

Vì 3(n-1) chia hết cho n-1

=>5 chia hết cho n-1

=>n-1 thuộc Ư(5)

Ta có: Ư(5)={-1;1;-5;5}

Ta có bảng sau :

n-1-11-55
n02-46
KLtmtmtmtm

Vậy... 

Bài 2:

a) Ta có:

21x=19y

=>x/19=y/21

Áp dụng tc của DTSBN

=>x/19=y/21=(x-y) /(19-21)=4/-2=-2

=>x/19=-2=>x=-38

=>y/21=-2=>y=-42

Vậy... 

b) Ta có :

3x=5y=7z

=>x/35=y/21=z/15

Áp dụng tc của DTSBN 

=>x/35=y/21=z/15=(x+y-z) /(35+21-15)=41/41=1

=>x/35=1=>x=35

=>y/21=1=>y=21

=>z/15=1=>z=15

Vậy... 

3 tháng 10 2018
a, 4x=5y=> x/5=y/4 => x/5=y/4=3x/15=2y/8 => 3x-2y/15-8=35/7=5( theo tính chất dãy tỉ số bằng nhau) => x=25;y=20 b, x/2=y/3=z/5 =>x+y+z/2+3+5=-90/10=-9(theo tính chất dãy tỉ số bằng nhau) =>x=-18;y=-27;z=-45 c, x:y:z=3:5:(-2) => x/3=y/5=z/-2 =5x/15=y/5=3z/-6 =>5x-y+3z/15-5+(-6)(theo tính chất dãy tỉ số bằng nhau) =124/4=31 =>x=93;y=155;z=-62 Mik sẽ bổ sung sau vì máy mik sắp hết pin
6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

19 tháng 7 2023

a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)

b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)

\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)

d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)

\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)

19 tháng 7 2023

a) �2=�5=�7;�+�+�=56

�2=�5=�7=�+�+�2+5+7=5614=4

⇒{�=4.2=8�=4.5=20�=4.7=28

b) �1,1=�1,3=�1,4(1);2�−�=5,5

(1)⇒2�−�1,1.2−1,3=5,50,9

d) �2=�3=�5;���=−30

�2=�3=�5=���2.3.5=−3030=−1

 

⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5
 

2 tháng 7 2019

Cho mk lời giải đầy đủ đi

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

nha bạn chúc bạn học tốt nha 

Có: x/0,3=2z=>x=0,3.2z=0,6z=3/5z

Thay vào z-3x=1 có:

z-3.3/5z=1=>z-9/5z=1=>-4/5.z=1=>z=-5/4

=>x=3/5.(-5/4)=-3/4

Mà: y/0,2=2z=2.(-5/4)=-5/2

=>y=0,2.(-5/2)=-1/2

Vậy x= -3/4; y= -1/2

24 tháng 8 2021

MK cần gấp lắm giúp mk với mn !