Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.1
Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:
\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
b.
Pt có nghiệm kép khi:
\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
\(=cot\left(\dfrac{7\pi}{2}-a\right)=cot\left(3\pi+\dfrac{\pi}{2}-a\right)=cot\left(\dfrac{\pi}{2}-a\right)=tana\)
a: =>x^2+5x-6>=0
=>(x+6)(x-1)>=0
=>x>=1 hoặc x<=-6
b: -5x^2+12x+6>0
=>5x^2-12x-6<0
=>\(\dfrac{6-\sqrt{66}}{5}< x< \dfrac{6+\sqrt{66}}{5}\)
c: =>7x^2-8x-12>=0
=>7x^2-14x+6x-12>=0
=>(x-2)(7x+6)>=0
=>x>=2 hoặc x<=-6/7
d: =>(x+2)(x+3)>=0
=>x>=-2 hoặc x<=-3
1) \(x+10\ge x^2\Leftrightarrow x^2-x-10\le0\Leftrightarrow\dfrac{1-\sqrt[]{41}}{2}\le x\le\dfrac{1+\sqrt[]{41}}{2}\rightarrow Câu.D.Sai\)
2) \(-\pi< -2\Leftrightarrow\pi>2\Leftrightarrow\pi^2>4\rightarrow Câu.A.Sai\)
5) Câu D
7) Câu C
8) Câu D
9) Câu D
10) Câu D
11) Câu C
12) Câu A
13) Câu C
Câu 1:
TXĐ:D=R
\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)
\(=2x^4-3x^2+1=f\left(x\right)\)
=>f(x) là hàm số chẵn
Câu 2: A
Câu 3: B
Câu 4: D