K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

11x^2-490x-3000=0

<=> 11x^2+60x-550x-3000=0

<=> 11x(x-50)-60(x-50)=0

<=> (x-50)(11x-60)=0

<=> x=50 hoặc x=60/11

8 tháng 5 2020

Bài này giải theo cách lớp 9 thì thực sự bó tay. 
Đặt x = y - 2/3

\(x^3+2x^2-23x+8=0\) 

\(\left(y-\frac{2}{3}\right)^3+2\left(y-\frac{2}{3}\right)^2-23\left(y-\frac{2}{3}\right)+8=0\)

\(\Leftrightarrow y^3-2y^2+\frac{4}{3}y-\frac{8}{27}+2y^2-\frac{8}{3}y+\frac{8}{9}-23y+\frac{46}{3}+8=0\)

\(\Leftrightarrow y^3-\frac{73}{3}y+\frac{646}{27}=0\) (1)

Đặt \(a=\sqrt{-\frac{4}{3}.\frac{-73}{3}}=\frac{2\sqrt{73}}{3}\)

Đặt \(y=a.\cos t\)

 với \(0\le t\le\pi\)

Thay vào (1), ta có: 

\(a^3\cos^3t-\frac{73}{3}a\cos t=-\frac{646}{27}\)

\(\Leftrightarrow\frac{292}{9}.\frac{2\sqrt{73}}{3}\cos^3t-\frac{73}{3}.\frac{2\sqrt{73}}{3}\cos t=-\frac{646}{27}\)

\(\Leftrightarrow-\frac{73}{3}.\frac{2\sqrt{73}}{3}\left(-\frac{4}{3}\cos^3t+\cos t\right)=-\frac{646}{27}\)

\(\Leftrightarrow146\sqrt{73}\left(4\cos^3t-3\cos t\right)=646\)

\(\Leftrightarrow146\sqrt{73}.\cos\left(3t\right)=646\)

\(\cos\left(3t\right)=\frac{323\sqrt{73}}{5329}\)

\(t=\frac{\pm arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2k\pi}{3}\left(k\in Z\right)\)

Vì \(0\le t\le\pi\)

\(\Rightarrow t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}\) hoặc \(t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)hoặc \(t=\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)

\(x=y+\frac{2}{3}=-\frac{73}{3}\cos t+\frac{2}{3}\)

Vậy nghiệm của pt là 

\(\left\{-\frac{73}{3}\cos\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3}\right\}\)

Các góc đều ở chế độ radian (Hàm arccos trong casio là cos-1)

***P/S: giải theo lớp 9 thì chịu

8 tháng 5 2020

Nhầm: Đổi \(-\frac{73}{3}\) thành \(\frac{2\sqrt{73}}{3}\)mới đúng

\(\sqrt{4x-8}-\sqrt{x-2}=2.\)

ĐK \(x\ge2\)

PT<=> \(2\sqrt{x-2}-\sqrt{x-2}=2\)

<=> \(\sqrt{x-2}=2\)

<=> x-2=4

<=> x=6 (t/m)

Vậ pt có nghiệm x=6

29 tháng 5 2019

mơn bn nha

7 tháng 10 2021

Đk: \(x\ge1\)

\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))

7 tháng 10 2021

Bạn làm chi tiết ra nữa đc khum? Như thế mình vẫn chưa hiểu lắm :((

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

5 tháng 5 2016

dùng bơ du hạ bậc đi

6 tháng 5 2016

là sao