Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
- AD tính chất định lý talet vào tam giác EPF có MN // FP ta được :
\(\dfrac{EM}{EF}=\dfrac{EN}{EP}=\dfrac{MN}{FP}=\dfrac{12}{x+12}=\dfrac{10}{10+4}=\dfrac{y}{16}\)
\(\Rightarrow\dfrac{12}{x+12}=\dfrac{y}{16}=\dfrac{10}{14}=\dfrac{5}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{80}{7}\\x=\dfrac{24}{5}\end{matrix}\right.\) ( cm )
Vậy ...
Ta có: EP = EN + NP = 10 + 4 = 14 (cm)
Xét tam giác EFP có: MN // FP (gt)
=> \(\dfrac{MN}{FP}=\dfrac{EN}{EP}=\dfrac{EM}{EF}\) (hệ quả định lý Talét)
Thay số: \(\dfrac{y}{16}=\dfrac{10}{14}=\dfrac{12}{12+x}\)
=> \(\left\{{}\begin{matrix}y=\dfrac{80}{7}\\12+x=16,8< =>x=\dfrac{24}{5}\end{matrix}\right.\)
- AD tính chất định lý talet vào tam giác FPQ có MN // PQ ta được :
\(\dfrac{FM}{FQ}=\dfrac{FN}{FP}=\dfrac{MN}{PQ}=\dfrac{10}{y}=\dfrac{12}{16}=\dfrac{x}{20}\)
\(\Rightarrow\dfrac{10}{y}=\dfrac{x}{20}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{40}{3}\\x=15\end{matrix}\right.\) ( cm )
Vậy ...
a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)
c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)
d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)
Vẽ tia Ax là tia đối của tia AB
Ta có:
∠xAD + ∠DAB = 180⁰ (kề bù)
⇒ ∠xAD = 180⁰ - ∠DAB
= 180⁰ - 120⁰
= 60⁰
Do AB // CD (gt)
⇒ Ax // CD
⇒ ∠CDA = ∠xAD = 60⁰ (so le trong)
⇒ ∠CDA ≠ ∠BCD (60⁰ 80⁰)
Vậy ABCD không phải hình thang cân
---------------
MNPQ thiếu điều kiện để xét có là hình thang cân hay không rồi em!
`2x - 3 = 5`
`<=> 2x = 5 + 3`
`<=> 2x = 8`
`=> x = 4`
Vậy `S = {4}`
_____________________
`3x - 4 = 11`
`<=> 3x = 11 + 4`
`<=> 3x = 15`
`=> x = 5`
Vậy `S = {5}`
______________
`(2x + 1)(x - 3) = 0`
`<=>` $\left[\begin{matrix} 2x + 1 = 0\\ x - 3 = 0\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x = 1/2\\ x = 3\end{matrix}\right.$
Vậy `S = {1/2; -3}`
__________________
`(2x - 3)(x + 2) = 0`
`<=>` $\left[\begin{matrix} 2x - 3 = 0\\ x + 2 = 0\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x = 3/2\\ x = -2\end{matrix}\right.$
Vậy `S = {-2; 3/2}`