Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
n=1=> đẳng thức đúng
giả sử có số n=a thoả mãn pt=>
2+5+8+....+(3a-1)=a(3a+1)/2=(3a^2+a)/2(1)
phải chứng minh n=a+1 thoả mãn pt:
2+5+8+......+(3a+2)=(a+1)(3a+4)/2=(3a^2+7a+4)/2(2)
lấy (2) trừ (1) ta được:
(6a+4)/2=3a+2
=> 0=0 (đúng vs mọi a)
=> đẳng thức (2) đúg, dpcm
\(3S=3\left(\frac{1}{2.5}+....+\frac{1}{\left(3n+1\right)\left(3n+2\right)}\right)\)
Đến đây thì bạn làm như dạng đơn giản nhé
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=\left(6n^2+30n+n+5\right)-\left(6n^2-3n+10n-5\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10⋮2\)
.........