Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của GT 6916 - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo.
a)\(\left(\frac{1}{5}\right)^{3n-1}=\frac{1}{25}\)
\(\Leftrightarrow\left(\frac{1}{5}\right)^{3n-1}=\left(\frac{1}{5}\right)^2\)
\(\Leftrightarrow3n-1=2\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
b)\(\left(\frac{4}{7}\right)^{n+2}=\frac{7}{4}\)
\(\Leftrightarrow\left(\frac{4}{7}\right)^{n+2}=\left(\frac{4}{7}\right)^{-1}\)
\(\Leftrightarrow n+2=-1\)
\(\Leftrightarrow n=-3\)
c)\(\left(\frac{2}{3}\right)^{-n+1}=\frac{3^3}{2^3}\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{3}{2}\right)^3\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{2}{3}\right)^{-3}\)
\(\Leftrightarrow-n+1=-3\)
\(\Leftrightarrow n=-4\)
c)\(\left(0,7\right)^{3n+1}=10^3:7^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{10}{7}\right)^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{7}{10}\right)^{-3}\)
\(\Leftrightarrow3n+1=-3\)
\(\Leftrightarrow3n=-4\)
\(\Leftrightarrow n=-\frac{4}{3}\)
Đặt C =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow C=\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\div2\)
Ta thấy: 1+ 2/ n^2+3n = n^2+3n+2 / n(n+3) =(n+1)(n+2) /n(n+3)
Áp dụng công thức trên,ta có:
A= (1+2/4 )(1+ 2/10)(1+2/18).....(1+2/ n^2+3n)
=(1+2 /1x4)( 1+2 /2x5)(1+2 /3x6).....[ (n+1)(n+2)/ n(n+3)]
=(2x3 /1x4)(3x4 /2x5)(4x5 /3x6).....[ (n+1)(n+2) /n(n+3)]
= 3x(n+1 /n+3)
Vì n+1 /n+3 <1 với mọi n thuộc N nên 3x(n+1 /n+3) <3
Vậy A<3
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)
\(H=2+4+6+...+2n\)
??? Cái gì đây, đây là câu hỏi hay câu trả lời ???
chúng ta hãy quy đồng rồi cộng chúng lại với nhau thì sẽ ra kết quả và cậu hãy xem lai kiến thức mới học của cậu đi