Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá
1:
a: =23/27-11/17+4/27+28/17
=23/27+4/27+28/17-11/17
=1+1=2
b: \(=\dfrac{2}{3}\cdot\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{2}{9}\)
=2/3-2/9
=6/9-2/9
=4/9
c: \(=\dfrac{11}{5}\cdot\dfrac{7}{3}-\dfrac{1}{3}\cdot\dfrac{11}{5}\)
=11/5(7/3-1/3)
=11/5*2
=22/5
d: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}=\dfrac{2024}{2}=1012\)
e: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
\(=\dfrac{1-2^2}{2^2}\cdot\dfrac{1-3^2}{3^2}\cdot...\cdot\dfrac{1-2023^2}{2023^2}\)
\(=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{2023^2-1}{2023^2}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{2}{3}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2022}{2023}\cdot\dfrac{2024}{2023}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}\)
\(=\dfrac{1}{2023}\cdot\dfrac{2024}{2}=\dfrac{1012}{2023}\)
tui làm được câu c thui
c) (1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2023}\right)\left(1-\dfrac{1}{2024}\right)\)
=\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2022}{2023}.\dfrac{2023}{2024}=\dfrac{1}{2024}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{2023}{2024}\)
\(=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot2023}{2\cdot3\cdot4\cdot5\cdot...\cdot2024}\)
\(=\dfrac{1}{2024}\)
Lời giải:
$\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2023!}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2022.2023}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2023-2022}{2022.2023}$
$< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2022}-\frac{1}{2023}$
$=1-\frac{1}{2023}<1$
Ta có đpcm
Ruộng hình chữ nhật có chiều dài là 10 m , chiêu rộng = 1/3 chiều dài
100 mét vuông thu 70 kg ngô
Ruộng đã thu ……kg ngô ,yến ngô
\(=\dfrac{3}{2}x\dfrac{4}{3}x\dfrac{5}{4}x...x\dfrac{2024}{2023}\)
=\(\dfrac{2024}{2}=1012\)
ai biết giúp mình với nha !
`Answer:`
\(C=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2023}-1\right)\)
\(=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)\left(\frac{1}{4}-\frac{4}{4}\right)...\left(\frac{1}{2023}-\frac{2023}{2023}\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)...\left(-\frac{2022}{2023}\right)\)
\(=\frac{1.2.3...2022}{2.3.4...2023}\)
\(=\frac{1}{2023}\)