Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề tý nhé
Áp dụng tính chất của dãy tí số bằng nhau,ta có:
\(\dfrac{x_1-x_2}{k_1}=\dfrac{x_2-x_3}{k_2}=\dfrac{x_3-x_1}{k_3}=\dfrac{x_1-x_2+x_2-x_3+x_3-x_1}{k1+k2+k3}=0\)
=>\(x_1=x_2\)
\(x_2=x_3\)
\(x_3=x_1\)
Do đó:\(x_1=x_2=x_3\left(đpcm\right)\)
Muốn tính tổng của một dãy số có quy luật cách đều chúng ta thường hướng dẫn học sinh tính theo các bước như sau:
Bước 1: Tính số số hạng có trong dãy: (Số hạng lớn nhất của dãy - số hạng bé nhất của dãy) : khoảng cách giữa hai số hạng liên tiếp trong dãy + 1
Bước 2: Tính tổng của dãy: (Số hạng lớn nhất của dãy + số hạng bé nhất của dãy) x số số hạng có trong dãy : 2
Vì K1, K2, K3 lẻ => K1 + K2 + K3 lẻ => K1; K2; K3 và K1 + K2 + K3 khác 0 (vì 0 là số chẵn). Vậy ta có
\(\frac{x_1-x_2}{K_1}=\frac{x_2-x_3}{K_2}\frac{x_1-x_3}{K_3}=\frac{\left(x_1-x_2\right)+\left(x_2-x_3\right)+\left(x_1-x_3\right)}{K_1+K_2+K_3}=\frac{0}{K_1+K_2+K_3}=0\)
=> \(\frac{x_1-x_2}{K_1}=0\) => x1 - x2 = 0 => x1 = x2
Tương tự
=> \(\frac{x_2-x_3}{K_2}=0\) => x2 - x3 = 0 => x2 = x3
Vậy x1 = x2 = x3
a) \(a_n=\frac{\left(1+n\right).n}{2}\)
\(a_{n+1}=\frac{\left(2+n\right)\left(1+n\right)}{2}\)
b) \(a_n+a_{n+1}=\frac{\left(1+n\right).n}{2}+\frac{\left(2+n\right)\left(1+n\right)}{2}\)
\(=\left(1+n\right)\left(\frac{n}{2}+\frac{2+n}{2}\right)=\left(1+n\right)\left(1+n\right)=\left(1+n\right)^2\) là số chính phương.
vì a//b nên 2 góc đồng vị bằng nhau
=> H3=K1;H1=K3
vì a//b nên 2 góc so le trong bằng nhau
=> H2=K2;H1=K1
từ H1=K1;H3=K1;H1=K3=>H3=K1=H1=K3
H3=K1;H3+K1=100*
=>H3=K1=50*
=>H3=K1=H1=K3=50*
còn lại tự làm nha (H1+H2=180*; H2=K2) (mình lười quá :) )