K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề tý nhé

Áp dụng tính chất của dãy tí số bằng nhau,ta có:

\(\dfrac{x_1-x_2}{k_1}=\dfrac{x_2-x_3}{k_2}=\dfrac{x_3-x_1}{k_3}=\dfrac{x_1-x_2+x_2-x_3+x_3-x_1}{k1+k2+k3}=0\)

=>\(x_1=x_2\)

\(x_2=x_3\)

\(x_3=x_1\)

Do đó:\(x_1=x_2=x_3\left(đpcm\right)\)

9 tháng 9 2017

mk nhầm k1,k2,k3 thuộc Z+ nhaleuleu

10 tháng 10 2015

\(\frac{x_1-x_2}{k_1}=\frac{x_2-x_3}{k_2}=\frac{x_1-x_3}{k_3}=\frac{x_1-x_2+x_2-x_3-x_1-x_3}{k_1+k_2-k_3}=\frac{0}{k_1+k_2-k_3}=0\)

=> x1 - x2 = x2 - x3 = x1 - x3= 0

=> x1 = x2 = x3 (đpcm)

8 tháng 10 2015

Vì K1, K2, K3 lẻ => K1 + K2 + K3 lẻ => K1; K2; K3 và K1 + K2 + K3 khác 0 (vì 0 là số chẵn). Vậy ta có

\(\frac{x_1-x_2}{K_1}=\frac{x_2-x_3}{K_2}\frac{x_1-x_3}{K_3}=\frac{\left(x_1-x_2\right)+\left(x_2-x_3\right)+\left(x_1-x_3\right)}{K_1+K_2+K_3}=\frac{0}{K_1+K_2+K_3}=0\)

=> \(\frac{x_1-x_2}{K_1}=0\) => x1 - x2 = 0 => x1 = x2

Tương tự

=> \(\frac{x_2-x_3}{K_2}=0\) => x2 - x3 = 0 => x2 = x3

Vậy x1 = x2 = x3

2 tháng 12 2018

\(x^2_2=x_1.x_3\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2},x^2_3=x_2.x_4\Rightarrow\frac{x_4}{x_3}=\frac{x_3}{x_2}\)\(\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}=\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\Rightarrow\left(\frac{x_2}{x_1}\cdot\frac{x_3}{x_2}\cdot\frac{x_4}{x_3}\right)=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\Rightarrow\frac{x_4}{x_1}=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\)

\(\Rightarrow\frac{x_1}{x_4}=\left(\frac{x_1+x_2+x_3}{x_2+x_3+x_4}\right)^3\left(đpcm\right)\)

3 tháng 12 2018

Từ \(X_2^2=X_1.X_3\)\(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}\)(1)

Từ \(X_3^2=X_2.X_4\)\(\Rightarrow\frac{X_2}{X_3}=\frac{X_3}{X_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}=\frac{X_3}{X_4}=\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\)

\(\Rightarrow\left(\frac{X_1}{X_2}\right)^3=\left(\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\right)^3\)(1)

Từ \(\left(\frac{X_1}{X_2}\right)^3=\frac{X_1}{X_2}.\frac{X_1}{X_2}.\frac{X_1}{X_2}=\frac{X_1}{X_2}.\frac{X_2}{X_3}.\frac{X_3}{X_4}=\frac{X_1}{X_4}\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

22 tháng 12 2017

giải giùm mình nha. mới thi học kì I toán mà bài này không làm được

7 tháng 11 2015

bai mjh lam la the so ko fai cai nay nhg cu lm

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

13 tháng 10 2015

Dùng tính chất dãy tỉ số bằng nhau

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)