Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề tý nhé
Áp dụng tính chất của dãy tí số bằng nhau,ta có:
\(\dfrac{x_1-x_2}{k_1}=\dfrac{x_2-x_3}{k_2}=\dfrac{x_3-x_1}{k_3}=\dfrac{x_1-x_2+x_2-x_3+x_3-x_1}{k1+k2+k3}=0\)
=>\(x_1=x_2\)
\(x_2=x_3\)
\(x_3=x_1\)
Do đó:\(x_1=x_2=x_3\left(đpcm\right)\)
\(x^2_2=x_1.x_3\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2},x^2_3=x_2.x_4\Rightarrow\frac{x_4}{x_3}=\frac{x_3}{x_2}\)\(\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}=\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\Rightarrow\left(\frac{x_2}{x_1}\cdot\frac{x_3}{x_2}\cdot\frac{x_4}{x_3}\right)=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\Rightarrow\frac{x_4}{x_1}=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\)
\(\Rightarrow\frac{x_1}{x_4}=\left(\frac{x_1+x_2+x_3}{x_2+x_3+x_4}\right)^3\left(đpcm\right)\)
Từ \(X_2^2=X_1.X_3\)\(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}\)(1)
Từ \(X_3^2=X_2.X_4\)\(\Rightarrow\frac{X_2}{X_3}=\frac{X_3}{X_4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}=\frac{X_3}{X_4}=\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\)
\(\Rightarrow\left(\frac{X_1}{X_2}\right)^3=\left(\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\right)^3\)(1)
Từ \(\left(\frac{X_1}{X_2}\right)^3=\frac{X_1}{X_2}.\frac{X_1}{X_2}.\frac{X_1}{X_2}=\frac{X_1}{X_2}.\frac{X_2}{X_3}.\frac{X_3}{X_4}=\frac{X_1}{X_4}\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0
vậy ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\ge\) 0
mà ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\le\)0
suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0
do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)
Có: \(x_2^2=x_1.x_3\Leftrightarrow\frac{x_2}{x_3}=\frac{x_1}{x_2}\left(1\right)\)
\(x_3^2=x_2.x_4\Rightarrow\frac{x_3}{x_4}=\frac{x_2}{x_3}\left(2\right)\)
\(x_4^2=x_3.x_5\Rightarrow\frac{x_4}{x_5}=\frac{x_3}{x_4}\left(3\right)\)
\(x_5^2=x_4.x_6\Rightarrow\frac{x_5}{x_6}=\frac{x_4}{x_5}\left(4\right)\)
Từ (1); (2); (3) và (4) \(\Rightarrow\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}=\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\)
\(\Rightarrow\frac{x_1^5}{x_2^5}=\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.\frac{x_4}{x_5}.\frac{x_5}{x_6}=\left(\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\right)^5=\frac{x_1}{x_6}\left(đpcm\right)\)
Vì K1, K2, K3 lẻ => K1 + K2 + K3 lẻ => K1; K2; K3 và K1 + K2 + K3 khác 0 (vì 0 là số chẵn). Vậy ta có
\(\frac{x_1-x_2}{K_1}=\frac{x_2-x_3}{K_2}\frac{x_1-x_3}{K_3}=\frac{\left(x_1-x_2\right)+\left(x_2-x_3\right)+\left(x_1-x_3\right)}{K_1+K_2+K_3}=\frac{0}{K_1+K_2+K_3}=0\)
=> \(\frac{x_1-x_2}{K_1}=0\) => x1 - x2 = 0 => x1 = x2
Tương tự
=> \(\frac{x_2-x_3}{K_2}=0\) => x2 - x3 = 0 => x2 = x3
Vậy x1 = x2 = x3