Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=70^o\left(d.d\right)\\\widehat{BOC}=180^o-\widehat{AOC}=180^o-70^o=110^o\\\widehat{BOC}=\widehat{AOD}=110^o\left(d.d\right)\end{matrix}\right.\)
Vậy chọn đáp án D
1.CMR:
a) 3.\(\left(x^2+y^2+z^2\right)-\left(x-y\right)^2\) \(-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
Xét \(\Delta ABC\)có \(\widehat{A}=40^0\);\(\widehat{B}=70^0\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(t/c tổng 3 góc)
\(\Rightarrow40^0+70^0+\widehat{C}=180^0\)
\(\Rightarrow110^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-110^0\)
\(\Rightarrow\widehat{C}=70^0=\widehat{B}\)
Vậy bài toán được chứng minh
Bạn có thể vẽ ra tập rồi trả lời câu hỏi mới dễ bạn à.
Còn trên đây mk ko biết vẽ hình.
Hoặc bạn có thể vào học 24 hoặc câu hỏi tương tự tham khảo.
Chúc bạn học tốt !
a, Vì m và n cùng vuông góc với a nên m//n
b, Vì m//n nên \(\widehat{B_1}=\widehat{D_1}=70^0\left(so.le.trong\right);\widehat{B_1}=\widehat{D_2}=70^0\left(đồng.vị\right)\)
c, Vì \(\widehat{B_1}+\widehat{G_1}=70^0+110^0=180^0\) mà 2 góc này ở vị trí trong cùng phía nên p//n
Mà n⊥a nên p⊥a
a) Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(tổng 3 góc trong 1\(\Delta\))
=> \(70^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=110^0\)(1)
Mà : \(\widehat{B}-\widehat{C}=10^0\)(2)
Từ (1) và (2)
=> \(2\widehat{B}=120^0\)
=> \(\widehat{B}=60^0\)
Vậy \(\widehat{B}=60^0,\widehat{C}=50^0\)
b) Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí)
=> \(100^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=80^0\)(1)
Mà \(\widehat{B}-\widehat{C}=50^0\)(2)
Từ (1) và (2) => \(2\widehat{B}=130^0\)
=> \(\widehat{B}=65^0\)
Vậy \(\widehat{B}=65^0,\widehat{C}=65^0-50^0=15^0\)
c) Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí)
=> \(60^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=120^0\)
Mà \(\widehat{B}=2\widehat{C}\)
=> \(2\widehat{C}+\widehat{C}=120^0\)
=> \(3\widehat{C}=120^0\)
=> \(\widehat{C}=40^0\)
Lại có \(\widehat{B}=2\widehat{C}\),thay \(\widehat{C}=40^0\)=> \(\widehat{B}=2\cdot40^0=80^0\)
Ta có: \(\widehat{cAa} = \widehat{B1} =70^o\) (gt) mà ở vị trí đồng vị
=> a // b
gamsahabnida( cảm ơn bn nhìu)