Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
cái này hình như của lớp 8 chứ lớp 7 ko có nên mk ko bít làm !!
5465746837648579
a, Xét ΔDHB và ΔDAB ta có:
HB = AB
DB chung
=> ΔDHB = ΔDAB ( cạnh huyền - cạnh góc vuông)
=> ˆDBHDBH^ = ˆDBADBA^
=> BD là tia phân giác ˆABCABC^
b, BD là tia phân giác ˆABCABC^
=> ˆDBADBA^ = 30∘∘
ΔABC vuông tại A có ˆABCABC^ = 60∘∘
=> ˆACBACB^ = 30∘∘
Xét ΔDCH và ΔDBA ta có:
ˆDBADBA^ = ˆACBACB^ ( =30∘∘)
DH = DA ( do ΔDHA = ΔDAB chứng minh câu a)
=> ΔDCH = ΔDBA ( cạnh huyền - góc nhọn)
=> DC = DB
=> ΔBDC cân tại D
a/ Xét tg vuông ABD và tg vuông HBD có
BD chung; HB=AB (gt) => tg ABD = tg HBD (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{ABD}=\widehat{HBD}\) => BD là phân giác \(\widehat{ABC}\)
b/
Xét tg vuông ABC có
\(\Rightarrow\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
\(\Rightarrow AB=\frac{BC}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (1)
Ta có HB=AB (gt) (2)
Từ (1) và (2) \(\Rightarrow HB=\frac{BC}{2}\) => H là trung điểm của BC => DH là trung tuyến thuộc BC
Mà \(DH\perp BC\) => DH là đường cao của tg BDC
=> tg BDC cân tại D (Trong tg nếu đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
hình bạn tự vẽ nhé
a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A
=> góc BAC = 90 độ và AB=AC
Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)
=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
mà AB=AC (cmt)
=> Tứ giác ABIC là hình vuông (dấu hiệu nhận biết hình vuông)
=> AI là phân giác góc BAC
1.CMR:
a) 3.\(\left(x^2+y^2+z^2\right)-\left(x-y\right)^2\) \(-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)