\(B=x^2-xy+y^2\)

CMR: B dương với mọi x,y

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Bạn ơi thiếu điều kiện của x,y rồi. Nếu không thì sửa đề : chứng minh B không âm với mọi x,y 

\(B=x^2-xy+y^2=\left(x^2-2.x.\frac{y}{2}+\frac{y^2}{4}\right)+\frac{3y^2}{4}=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0.\)

Dấu '=' xảy ra (hay B=0) khi \(\hept{\begin{cases}\frac{3y^2}{4}=0\\\left(x-\frac{y}{2}\right)^2=0\end{cases}\Leftrightarrow}x=y=0\)

16 tháng 7 2019

Cm: B dương

  B = x2 - 2xy + y2 > 0  vì  (x - y)2 \(\ge\)0

Bạn ơi đề sai nhé, phải là x2 - 2xy + y2

25 tháng 10 2019

a.\(x^2+y^2+1\ge xy+x+y\)

\(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(y-1\right)^2\ge0\)(LĐ).

Vậy ta có đpcm.

b. \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy ta có đpcm.

#Walker

11 tháng 6 2017

a) \(\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b) \(\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\)

Vì \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

Nên \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4>0\forall x,y,z\)

NV
17 tháng 6 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 6 2020

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z

13 tháng 10 2019

Bài 1 a chưa nghĩ ra. Thấy cái |x| hơi lạ.. Mà mình cũng ko chắc câu 1 b đâu nha:v

1b) \(B=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+15\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)

Đặt \(x^2-5x+5=t\)

\(B=\left(t-1\right)\left(t+1\right)+15=t^2+14\ge14\)

Đẳng thức xảy ra khi \(t=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ....

Bài 2: a)BĐT \(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi x = y = 1

b) \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in\mathbb{R}\)

Ta có đpcm.

15 tháng 10 2019

a) \(A=x^2+2\left|x\right|+2\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0;\forall x\\2\left|x\right|\ge0;\forall x\end{matrix}\right.\)\(\Rightarrow x^2+2\left|x\right|\ge0;\forall x\)

\(\Rightarrow x^2+2\left|x\right|+2\ge0+2;\forall x\)

Hay \(A\ge2;\forall x\)

Dấu "="xảy ra \(\Leftrightarrow x=0\)

Vậy MIN A=2 \(\Leftrightarrow x=0\)

23 tháng 6 2018

Bài 1 : Tạm thời ko biết giải -_- 

Bài 2 : 

\(a)\) Đặt \(A=x^2+x+1\) ta có : 

\(A=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Vậy \(A>0\) với mọi x, y 

\(b)\) Đặt \(B=-4x^2-4x-2\) ta có : 

\(-B=4x^2+4x+2\)

\(-B=\left(4x^2+4x+1\right)+1\)

\(-B=\left(2x+1\right)^2+1\ge1\)

\(B=-\left(2x+1\right)^2-1\le-1< 0\)

Vậy \(B< 0\) với mọi x, y 

\(c)\) Đặt \(C=x^2+xy+y^2+1\) ta có : 

\(8C=8x^2+8xy+8y^2+8\)

\(8C=\left(4x^2+8xy+4y^2\right)+4x^2+4y^2+1\)

\(8C=\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1\ge1\)

\(C=\frac{\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1}{8}\ge\frac{1}{8}>0\)

Vậy \(C>0\) với mọi x, y 

Chúc bạn học tốt ~ 

23 tháng 6 2018

Aigiúpmìnhbài1với =)))

Mơnlắm =))))

20 tháng 6 2019

2) Có: \(a+b+c=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)

Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)

Tương tự:...

\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)