\(\)a, \(x^2+y^2+1\ge xy+x+y\) với mọi x,y<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

a.\(x^2+y^2+1\ge xy+x+y\)

\(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(y-1\right)^2\ge0\)(LĐ).

Vậy ta có đpcm.

b. \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy ta có đpcm.

#Walker

13 tháng 10 2019

Bài 1 a chưa nghĩ ra. Thấy cái |x| hơi lạ.. Mà mình cũng ko chắc câu 1 b đâu nha:v

1b) \(B=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+15\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)

Đặt \(x^2-5x+5=t\)

\(B=\left(t-1\right)\left(t+1\right)+15=t^2+14\ge14\)

Đẳng thức xảy ra khi \(t=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ....

Bài 2: a)BĐT \(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi x = y = 1

b) \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in\mathbb{R}\)

Ta có đpcm.

15 tháng 10 2019

a) \(A=x^2+2\left|x\right|+2\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0;\forall x\\2\left|x\right|\ge0;\forall x\end{matrix}\right.\)\(\Rightarrow x^2+2\left|x\right|\ge0;\forall x\)

\(\Rightarrow x^2+2\left|x\right|+2\ge0+2;\forall x\)

Hay \(A\ge2;\forall x\)

Dấu "="xảy ra \(\Leftrightarrow x=0\)

Vậy MIN A=2 \(\Leftrightarrow x=0\)

16 tháng 4 2019

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

16 tháng 4 2019

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé

a: Thiếu vế phải rồi bạn

b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)

28 tháng 3 2017

Câu b) x/y + y/x >hoặc = 2

<=> x/y + y/x - 2 > hoặc = 0

<=> x^2 + y^2 -2xy /xy >hoặc =0

<=> (x-y)^2 /xy > hoặc = 0

(x-y)^2 > hoặc = 0 với mọi x;y .Dấu"=" xảy ra khi x=y

vì x;y cùng dấu =>xy>0

=>(x-y)^2 / xy > hoặc = 0 luôn luôn đúng.

Mà các Phép biến đổi trên là tương đương

=>x/y + y/x >hoặc =2 với mọi x;y cùng dấu. Dấu "=" xảy ra khi x=y. Nhớ nhé

28 tháng 3 2017

Câu g) a^2 + b^2 > hoặc =1/2 với a+b=1

vì a+b=1 =>(a+b)^2 = 1 =>(1*a+1*b)^2 =1

Áp dụng bất đẳng thức Bunhiacốpski cho 4 số 1;1;a;b ta có

(1*a+1*b)^2 < hoặc = (1^2 + 1^2 )(a^2 + b^2).Dấu "=" xảy ra khi 1^2 / a^2 = 1^2 /b^2 =>1/a = 1/b=>a=b=1/2

Hay 1< hoặc = 2(a^2 +b^2) .Dấu "=" xảy ra khi a=b=1/2

=>a^2 + b^2 > hoặc = 1/2.Dấu "=" xảy ra khi a=b=1/2 =>đpcm

11 tháng 6 2017

a) \(\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b) \(\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\)

Vì \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

Nên \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4>0\forall x,y,z\)

22 tháng 9 2020

Ta có x2 - 2x + 5

= (x2 - 2x + 4) + 1 

= (x - 2)2 + 1 \(\ge\)1 > 0 (đpcm)

b) Ta có : 4x2 + 4x - 3 = (4x2 + 4x + 1) - 4 = (2x + 1)2 - 4 \(\ge\) - 4 (đpcm)

22 tháng 9 2020

+) Ta có: \(x^2-2x+5=\left(x^2-2x+1\right)+4\)

                                         \(=\left(x-1\right)^2+4\)

    Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-1\right)^2+4\ge4>0\forall x\)

 Vậy \(x^2-2x+5>0\)

13 tháng 7 2019

b) Ta có: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

  \(2x^2+2y^2-x^2-2xy-y^2\ge0\) 

\(x^2-2xy+y^2\ge0\)

\(\left(x-y\right)^2\ge0\)  luôn đúng \(\forall x;y\)

Vậy \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\left(đpcm\right)\)