\(x^2+xy+y^2+1>0\)với mọi x

b,\(x^2+4y^2+2^2-2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

a) \(\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b) \(\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\)

Vì \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

Nên \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4>0\forall x,y,z\)

6 tháng 8 2019

làm tắt ko hiểu thì hỏi 

a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)

b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)

\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)

2 tháng 9 2018

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

13 tháng 7 2019

sử dụng hằng đẳng thức 1.2

23 tháng 6 2018

Bài 1 : Tạm thời ko biết giải -_- 

Bài 2 : 

\(a)\) Đặt \(A=x^2+x+1\) ta có : 

\(A=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Vậy \(A>0\) với mọi x, y 

\(b)\) Đặt \(B=-4x^2-4x-2\) ta có : 

\(-B=4x^2+4x+2\)

\(-B=\left(4x^2+4x+1\right)+1\)

\(-B=\left(2x+1\right)^2+1\ge1\)

\(B=-\left(2x+1\right)^2-1\le-1< 0\)

Vậy \(B< 0\) với mọi x, y 

\(c)\) Đặt \(C=x^2+xy+y^2+1\) ta có : 

\(8C=8x^2+8xy+8y^2+8\)

\(8C=\left(4x^2+8xy+4y^2\right)+4x^2+4y^2+1\)

\(8C=\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1\ge1\)

\(C=\frac{\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1}{8}\ge\frac{1}{8}>0\)

Vậy \(C>0\) với mọi x, y 

Chúc bạn học tốt ~ 

23 tháng 6 2018

Aigiúpmìnhbài1với =)))

Mơnlắm =))))

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

21 tháng 10 2017

- Câu a): *y^2 , sai đề y2.

21 tháng 10 2017

Câu b:

Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)

\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)

\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)

\((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)

\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)

\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)

9 tháng 10 2017

Phép nhân và phép chia các đa thức

Câu a mình chắc chắn là đúng vì mình làm rồi.vui

Chúc bạn học tốt.

9 tháng 10 2017

b) \(-4x^2-4x-2\) <0 với mọi x

\(=-\left(4x^2+4x+2\right)\)

\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)

\(=-\left[\left(2x+1\right)^2+2\right]\)

\(=-\left(2x+1\right)^2-2\)

Nx : \(-\left(2x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x

\(\Rightarrow-4x^2-4x-2< 0\) với mọi x

22 tháng 9 2020

Ta có x2 - 2x + 5

= (x2 - 2x + 4) + 1 

= (x - 2)2 + 1 \(\ge\)1 > 0 (đpcm)

b) Ta có : 4x2 + 4x - 3 = (4x2 + 4x + 1) - 4 = (2x + 1)2 - 4 \(\ge\) - 4 (đpcm)

22 tháng 9 2020

+) Ta có: \(x^2-2x+5=\left(x^2-2x+1\right)+4\)

                                         \(=\left(x-1\right)^2+4\)

    Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-1\right)^2+4\ge4>0\forall x\)

 Vậy \(x^2-2x+5>0\)