\(\sqrt{2x-1}\le3x-2\)có tổng 5 nghiệm nguyên nhỏ nhất là 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

1+5+10-6=10    trung tony tv co ai la phan cua anh tony tv khong?

5 tháng 4 2020

bạn làm rõ ràng ra đi

NV
6 tháng 4 2020

ĐKXĐ: \(x\ge\frac{1}{2}\)

- Với \(x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge\frac{2}{3}\) hai vế ko âm, bình phương ta được:

\(2x-1\le9x^2-12x+4\)

\(\Leftrightarrow9x^2-14x+5\ge0\) \(\Rightarrow x\ge1\)

Vậy tổng 5 nghiệm nguyên nhỏ nhất là 15

AH
Akai Haruma
Giáo viên
27 tháng 6 2020

Lời giải:

$\sqrt{-x^2+2x+3}\leq x^2-2x+m$

$\Leftrightarrow \sqrt{-x^2+2x+3}-x^2+2x\leq m$

Đặt $f(x)=\sqrt{-x^2+2x+3}-x^2+2x$

$f'(x)=\frac{-x+1}{\sqrt{-x^2+2x+3}}-2x+2=0\Leftrightarrow x=1$

Lập bảng biến thiên với các điểm $x=0; x=1; x=2$

$f(0)=\sqrt{3}; f(1)=\sqrt{3}; f(2)=\sqrt{3}$

Từ BBT ta thấy để BPT $f(x)\leq m$ có nghiệm thuộc đoạn $[0;2]$ thì $m\geq \sqrt{3}$

Mà $m< 10$ và $m$ nguyên dương nên $m\in\left\{4;5;6;7;8;9\right\}$

Tức là có 6 giá trị $m$ thỏa mãn.

27 tháng 6 2020

Cô ơi, nhưng đáp án lại là 8 giá trị cô ạ, em đăng lên đây để hỏi cách làm ạ

29 tháng 4 2020

\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)

mình đánh nhầm, giúp vs ạ