\(a^2-a-1=0\). Tính giá trị BT Q=\(a^4-3a^3+4a^2-a+2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

\(Q=a^4-3a^3+4a^2-a+2\)

    \(=a^4-2a^3+a^2-a^3+a^2+a+2a^2-2a-2+4\)

    \(=\left(a^2-a\right)^2-a\left(a^2-a-1\right)+2\left(a^2-a-1\right)+4\)

    \(=1^2-0+0+4=5\)

Chúc bạn học tốt.

      

24 tháng 9 2018

\(a^3+4a^2+a+3=a^3+a^2-2a+3a^2+3a-2+5\) 

                           \(=(a^3+a^2-2a)+(3a^2+3a-6)+9\)

                           \(=a(a^2+a-2)+3(a^2+a-2)+9\)

                           \(=(a^2+a-2)(a+3)+9=9\)     (Do \(a^2+a-2=0\Rightarrow (a^2+a-2)(a+3)=0\) )

tích cho mk nha!!!

\(P=\frac{a^4+a^2+1}{a^2}\)

   \(=\frac{a^2-a+1}{a}.\frac{a^2+a+1}{a}\)

   \(=\frac{\left(a^2-4a+1\right)+3a}{a}.\frac{\left(a^2-4a+1\right)+5a}{a}\)

   \(=\frac{3a}{a}.\frac{5a}{a}=15\)

Vậy \(P=15\)

2 tháng 2 2017

\(a^2-4a+1=0\Rightarrow a^2=4a-1\)(*)

với a=0 hoặc a=1/4 không phải là nghiệm

xét a khác 0 và a>1/4

bình phương hai vế (*)

=> a^4=16a^2-8a+1=2(a^2-4a+1)+14a^2-1=14a^2-1 

\(P=\frac{14a^2-1+a^2+1}{a^2}=15\)

1 tháng 1 2017

Ta có:

a + b = 1

<=> a2 + 2ab + b2 = 1

<=> 5 + 2ab = 1

<=> ab = - 2

\(\Leftrightarrow a=\frac{-2}{b}\)

Thế cái này vô P là ra ah. B làm tiếp nhé

24 tháng 3 2020

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

28 tháng 3 2023

mik thắc mắc tại sao 3a lại mất vậy