Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\Rightarrow\hept{\begin{cases}x=3.2=6\\y=3.5=15\end{cases}\Rightarrow xy=6.15=90}\)
5x=2y => \(\frac{x}{2}=\frac{y}{5}=>\frac{x}{6}=\frac{y}{15}\)
2y=3z => \(\frac{y}{3}=\frac{z}{2}=>\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x^2}{36}=\frac{x.y}{6.15}=\frac{90}{90}=1\)
=> x2 =36
=> x= -6;6
Xet x=-6
=> y= 90: (-6)=-15
=> z= -15:15.10=-10
Xet x=6
=> y=90:6=15
=> z=15:15.10=10
Vậy ( x;y;z) =( -6;-15;-10) ; ( 6;15;10)
5x = 2y --> x/y = 2/5
Đặt x = 2k; y=5k
xy=40
2k.5k=40
10k^2=40
k^2=4
k=2 hoặc k=-2
Khi k=2 --> x = 4; y=10
Khi k=-2 --> x = -4; y = -10
\(5x=2y=k\)
\(\Rightarrow xy=\dfrac{5x.2y}{10}=\dfrac{k^2}{10}=40\Rightarrow k=\pm20\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{20}{5}=4\\y=\dfrac{20}{2}=10\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{-20}{5}=-4\\y=-\dfrac{20}{2}=-10\end{matrix}\right.\end{matrix}\right.\)
tìm x,y,z 5x=2y , 2x=3z và x.y=90
\(\frac{x}{2}=\frac{y}{5}=\frac{x}{3}=\frac{z}{2}\)và \(x.y=90\)
\(\Leftrightarrow\frac{x}{2}=\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{5}=\frac{z}{2}=\frac{x.y}{6.5}=\frac{90}{30}=3\)
\(\Rightarrow\frac{x}{6}=3\Rightarrow3.6=18\)
\(\frac{y}{5}=3\Rightarrow y=3.5=15\)
\(\frac{z}{2}=3\Rightarrow z=3.2=6\)
Vây x = 18 y = 15 z = 6
k nha ^-^
\(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\left(1\right)\)
Vì \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2024}\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=21.2^2.\dfrac{1}{2}+4.2.\left(\dfrac{1}{2}\right)^2=21.2+4.2.\dfrac{1}{4}=42+2=44\)
Ta có: \(\left(x-2\right)^4\ge0\forall x\)
\(\left(2y-1\right)^{2024}\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\forall x;y\)
Mặt khác: \(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\)
nên \(\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2024}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Thay \(x=2\) và \(y=\dfrac{1}{2}\) vào \(M\), ta được:
\(M=21\cdot2^2\cdot\dfrac{1}{2}+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)
\(=42+2\)
\(=44\)
Vậy \(M=44\) tại \(x=2;y=\dfrac{1}{2}\).
#\(Toru\)
Ta có : \(5x=2y\)
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
Nên : \(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{5}=3\Rightarrow y=15\)
Vậy x.y = 6 x 15 = 90
Vì 5x=2y
Suy ra,x=2/5 y.
Mà x+y=21 suy ra 2/5y+y=21
7/5y=21
y=21:7/5
y=15
x=2/5.15=6
Vậy x.y=15.6=90.
Đ/số:90