Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y,z 5x=2y , 2x=3z và x.y=90
\(\frac{x}{2}=\frac{y}{5}=\frac{x}{3}=\frac{z}{2}\)và \(x.y=90\)
\(\Leftrightarrow\frac{x}{2}=\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{5}=\frac{z}{2}=\frac{x.y}{6.5}=\frac{90}{30}=3\)
\(\Rightarrow\frac{x}{6}=3\Rightarrow3.6=18\)
\(\frac{y}{5}=3\Rightarrow y=3.5=15\)
\(\frac{z}{2}=3\Rightarrow z=3.2=6\)
Vây x = 18 y = 15 z = 6
k nha ^-^
Từ \(5x=2y\)\(\Rightarrow\frac{x}{y}=\frac{2}{5}\)
Từ \(2x=3z\)\(\Rightarrow\frac{x}{z}=\frac{3}{2}\)
Từ \(xy=90\)\(\Rightarrow x=\frac{90}{y};y=\frac{90}{x}\)
Ta có: \(\frac{x}{y}=\frac{2}{5}\)
Mà \(x=\frac{90}{y}\)
Nên \(\frac{\frac{90}{y}}{y}=\frac{2}{5}\)\(\Leftrightarrow\frac{90}{y^2}=\frac{2}{5}\)\(\Leftrightarrow y=\pm15\)
*Khi \(y=15\) thì \(x=\frac{90}{15}=6\) và \(z=\frac{6.2}{3}=4\)
*Khi \(y=-15\) thì \(x=\frac{90}{-15}=-6\) và \(z=\frac{-6.2}{3}=-4\)
Vậy \(\left\{x;y;z\right\}\in\left\{\left(6;15;4\right),\left(-6;-15;-4\right)\right\}\)
a)\(\left|x-2y\right|=5\Rightarrow\left[\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)
Từ \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)\(\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
Nếu x-2y=5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{5}{-5}-1\)
\(\Rightarrow\left\{\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.\)
Nếu x-2y=-5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\left\{\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)
Vậy có 2 bộ (x,y,z). Đó là (-15;-10;-6), (15;10;6)
b) Từ \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)\(\Rightarrow\frac{x}{6}=\frac{y}{15}\left(1\right)\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\)\(\Rightarrow\frac{x}{6}=\frac{z}{4}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
Đặt\(\)\(\frac{x}{6}=\frac{y}{15}=\frac{x}{4}=k\)
\(\Rightarrow\left\{\begin{matrix}x=6k\\y=15k\\z=4k\end{matrix}\right.\Rightarrow xy=90k^2\)
\(\Rightarrow90k^2=90\Rightarrow k^2=1\Rightarrow\left[\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Với k=1\(\Rightarrow\)\(\left\{\begin{matrix}x=6\\y=15\\z=4\end{matrix}\right.\)
Với k=-1\(\Rightarrow\left\{\begin{matrix}x=-6\\y=-15\\z=-4\end{matrix}\right.\)
5x=2y
\(=>\frac{x}{2}=\frac{y}{5}=>\frac{x}{6}=\frac{y}{15}\left(1\right)\)
2x=3z
\(=>\frac{x}{3}=\frac{z}{2}=>\frac{x}{6}=\frac{z}{4}\left(2\right)\)
Từ (1) và (2)
=>\(\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{4}=k\)
=>x=6k
y=15k
z=4k
=>x.y=6k.15k
=>6k.15k=90
\(=>90.k^2=90=>k^2=1=>k=1;-1\)
với k= 1
=>x=6;y=15;z=4
với k =-1
=>x=-6;y=-15;z=-4
Từ 5x=2y =>\(\frac{x}{2}\)=\(\frac{y}{5}\)=>\(\frac{x}{6}\)=\(\frac{y}{15}\)1
Từ 2x=3z =>\(\frac{x}{3}\)=\(\frac{z}{2}\)=>\(\frac{x}{6}\)=\(\frac{z}{4}\)2
Từ 1 và 2, suy ra : \(\frac{x}{6}\)=\(\frac{y}{15}\)=\(\frac{z}{4}\)
Đặt \(\frac{x}{6}\)=\(\frac{y}{15}\)=k => x=6k ; y=15k
Thay x=6k ; y=15k vào xy=90,ta có:
xy=90 <=> 6k.15k=90 <=> k^2.15.6=90 <=> k^2.90=90 <=> k^2=1 hoặc -1
Với k=1 ,ta có:
x=6 ; y=15 ; z=4
Với k=-1 ,ta có:
x=-6 ; y=-15 ; z=-4
Mk ko bt có đúng ko nữa. Nếu ko đúng thì sorry nha!!!
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{xy}{10}=9\Rightarrow x=-6;6\)
Ta có 2x=3z nên x1=6; y1=15 ; z1=4 Hoặc x1=-6 ;y1=-15 ; z1=-4
5x=2y => \(\frac{x}{2}=\frac{y}{5}=>\frac{x}{6}=\frac{y}{15}\)
2y=3z => \(\frac{y}{3}=\frac{z}{2}=>\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x^2}{36}=\frac{x.y}{6.15}=\frac{90}{90}=1\)
=> x2 =36
=> x= -6;6
Xet x=-6
=> y= 90: (-6)=-15
=> z= -15:15.10=-10
Xet x=6
=> y=90:6=15
=> z=15:15.10=10
Vậy ( x;y;z) =( -6;-15;-10) ; ( 6;15;10)