Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hai biểu thức trên là đơn thức
\(\frac{8}{3y}abx\)có bậc là 1+1+1+1=4
\(\frac{9y}{10}abx\)có bậc là : 1+1+1+1=4
a) 3x2y3+x2y3=4x2y3
b)5x2y-1/2x2y=10/2x2y-1/2x2y=9/2x2y
c) \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{3}{4}xyz^2+\frac{2}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{5}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{4}{4}xyz^2=xyz^2\)
\(a,3x^2y^3+x^2y^3=4x^2y^3\)
\(b,5x^2y-\frac{1}{2}x^2y=\frac{9}{2}x^2y\)
\(c,\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}xyz^2-\frac{1}{4}xyz^2\right)+\frac{1}{2}xyz^2=\frac{2}{4}xyz^2+\frac{1}{2}xyz^2=xyz^2\)
\(P=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}.\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x\left(1+y+yz\right)}+\frac{xy}{xy\left(1+z+xz\right)}\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+xyz.x}\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\left(xyz=1\right)\)
\(P=\frac{1+x+xy}{1+x+xy}=1\)
Vậy P=1
\(\frac{8}{3a}xyz\)và \(\frac{9a}{10}xyz\)đều là các đơn thức
Vì cả hai đơn thức \(\frac{8}{3a}\)và \(\frac{9a}{10}xyz\)đều có chung phần biến \(xyz\)
=> Bậc của cả hai đơn thức trên là : 1 + 1 + 1 = 3