\(\frac{3}{4}\)\(xyz^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

Kết quả C. 3xyz2

12 tháng 4 2020

thanks

26 tháng 3 2017

rất dễ nhưng bn tự làm đi đằng mình ghi xong có bạn khác giải rùibucminh

26 tháng 3 2017

giải hộ mình đi mà mình chưa đc học

29 tháng 5 2018

\(=-6\)

23 tháng 5 2020

Bài 1:

\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)

\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)

\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)

\(B=x^8.y^7.\frac{2}{3}\)

Bài 2:

\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)

\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)

B tương tự nhé, đáp án là (theo mình)

\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)

11 tháng 3 2021

a) 3x2y3+x2y3=4x2y3

b)5x2y-1/2x2y=10/2x2y-1/2x2y=9/2x2y

c) \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{3}{4}xyz^2+\frac{2}{4}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{5}{4}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{4}{4}xyz^2=xyz^2\)

11 tháng 3 2021

\(a,3x^2y^3+x^2y^3=4x^2y^3\)

\(b,5x^2y-\frac{1}{2}x^2y=\frac{9}{2}x^2y\)

\(c,\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}xyz^2-\frac{1}{4}xyz^2\right)+\frac{1}{2}xyz^2=\frac{2}{4}xyz^2+\frac{1}{2}xyz^2=xyz^2\)

28 tháng 10 2020

1/2x=5/6+3/4

1/2x=19/12

x=19/12 chia 1/2

x=19/6

Vậy x=19/6

         Chúc bạn học tốt :)

28 tháng 10 2020

thiêu kành nhìu :3

18 tháng 7 2018

\(3xyz^2+\left(-\frac{4}{8}\right)xyz^5\cdot\frac{1}{3}xyz\)

\(=3xyz^2-\frac{1}{2}xyz\cdot\frac{1}{3}xyz\)

\(=3xyz-\frac{1}{6}x^2y^2z^2\)

\(xyz\left(3-\frac{1}{6}xyz\right)\)

b) \(3xyz^5\cdot\left(-\frac{1}{7}\right)xyz\cdot\frac{-1}{8}xyz^4\)

\(=\left[3\cdot\left(-\frac{1}{7}\right)\cdot\left(-\frac{1}{8}\right)\right]\left(x\cdot x\cdot x\right)\left(y\cdot y\cdot y\right)\left(z^5\cdot z\cdot z^4\right)\)

\(=\frac{3}{56}x^3y^3z^{10}\)

18 tháng 7 2018

a, \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\cdot\frac{1}{3}xyz=3xyz^2+\left[\left(\frac{-4}{8}\right)\cdot\frac{1}{3}\right]xyz^5xyz\)\(=3xyz^2-\frac{1}{2}x^2y^2z^6\)

b, \(3xyz^5\cdot\left(\frac{-1}{7}xyz^2\right)\cdot\frac{-1}{8}xyz^4=\left[3\cdot\left(\frac{-1}{7}\right)\cdot\left(\frac{-1}{8}\right)\right]xyz^5xyz^2xyz^4=\frac{3}{56}x^3y^3z^{11}\)