Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{3a}xyz\)và \(\frac{9a}{10}xyz\)đều là các đơn thức
Vì cả hai đơn thức \(\frac{8}{3a}\)và \(\frac{9a}{10}xyz\)đều có chung phần biến \(xyz\)
=> Bậc của cả hai đơn thức trên là : 1 + 1 + 1 = 3
a) \(x\ne+-\sqrt{2}\)
b) mọi giá trị của x đều có nghĩa vì \(x^2+1\ge1\)
c) \(xy-3y\ne0\Rightarrow y\left(x-3\right)\ne0\Rightarrow y\ne0;x\ne3\)
d) \(x\ne\frac{1}{2}\)
Mẫu khác 0 là được
a) để biểu thức a có nghĩa thì x^2-2 khác không
=>x^2 khác 2
=> x khác cộng trừ căn 2
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
hai biểu thức trên là đơn thức
\(\frac{8}{3y}abx\)có bậc là 1+1+1+1=4
\(\frac{9y}{10}abx\)có bậc là : 1+1+1+1=4