Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{3a}xyz\)và \(\frac{9a}{10}xyz\)đều là các đơn thức
Vì cả hai đơn thức \(\frac{8}{3a}\)và \(\frac{9a}{10}xyz\)đều có chung phần biến \(xyz\)
=> Bậc của cả hai đơn thức trên là : 1 + 1 + 1 = 3
\(A=\dfrac{15}{8}xy^2\cdot\left(-8\right)x^9y^6=-15x^{10}y^8\)
Hệ số là -15
Bậc là 18
a: A(-2)=5(-2)^2-3*(-2)-16
=20+6-16=10
b: B=4x^2y^2*4x^6y^4=16x^8y^6
Hệ số là 16
Bậc là 14
Bài làm
a) Tích của hai đơn thức A và B là:
A . B = -2xy . xy = -2x2y2
b) Hệ số của đơn thức là: -2.
Biến của đơn thức là: x2y2
Bậc của đơn thức là: 4
c) Thay x = 3 vào tích của hai đơn thức A và B ta được:
-2 . 32 . y2
Mà giá trị của đơn thức là -6
<=> -2 . 32 . y2 = -6
<=> -2 . 9 . y2 = -6
<=> -18 . y2 = -6
<=> y2 = \(\frac{-6}{-18}=\frac{1}{3}\)
<=> y = \(\pm\sqrt{\frac{1}{3}}\)
Vậy với x = 3, giá trị của đơn thức là -6 thì y = \(\pm\sqrt{\frac{1}{3}}\)
d) Ta có: -2x2y2
Mà x2 > 0 V x thuộc R
y2 > 0 V y thuộc R
=> x2y2 > 0 V x,y thuộc R
=> x2y2 luôn là số dương.
Mà -2x2y2 < 0 V x,y thuộc R
Vậy đa thức trên luôn nhận giá trị âm với mọi x, y.
# Học tốt #
Cho đơn thức A = -2xy và đơn thức B = xy
a) Tích của hai đơn thức
\(A\cdot B=-2xy\cdot xy=-2\left(xx\right)\left(yy\right)=-2x^2y^2\)
b) Hệ số : -2
Phần biến : x2y2
Bậc của đơn thức tích = 2 + 2 = 4
c) Đơn thức tích có giá trị là -6
=> \(-2x^2y^2=-6\)biết x = 3
Thay x = 3 vào đơn thức tích ta được :
\(-2\cdot3^2\cdot y^2=-6\)
=> \(-2\cdot9\cdot y^2=-6\)
=> \(-18\cdot y^2=-6\)
=> \(y^2=\frac{1}{3}\)
=> \(y=\sqrt{\frac{1}{3}}\)
d) CMR đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y
Ta dễ dàng nhận thấy : x2 và y2 đều có số mũ là chẵn
=> x2y2 luôn nhận giá trị dương với mọi x và y
Phần hệ số -2 mang dấu âm
=> ( - ) . ( + ) = ( - )
=> Đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y ( đpcm )
a) các đơn thức: 2xy2 ; 5
b) các đa thức: 2x + 3y ; x3y2 - 1
a,các biểu thức là đơn thức là: 2xy2; 5
b,các biểu thức là đa thức nhung ko phải là đơn thức là: 2x+3y;
hai biểu thức trên là đơn thức
\(\frac{8}{3y}abx\)có bậc là 1+1+1+1=4
\(\frac{9y}{10}abx\)có bậc là : 1+1+1+1=4