Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xài trò này chắc Oke :))
a)
Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p
\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)
\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)
\(=1267\)
b)
\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)
Ta tính \(x^5+y^5\) theo S và P
Dễ có:
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)
\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)
\(=S^5-5S^3P+2SP^2-S^2P\)
Chắc không nhầm lẫn gì ở việc tính toán =)))
Biết xy=11 và x2y+xy2+x+y=2010.Tính x2+y2
ta có:x2y+xy2+x+y=2010
<=>xy(x+y)+x+y=2010
<=>(x+y)(xy+1)=2010
<=>x+y=167,5
<=>(x+y)2=x2+y2+2xy=28056,25
<=>x2+y2=28056,25-22=28034,25
a) x + y = 6 và xy = 8 => x = 2; y = 4
22 + 42 = 4 + 16 = 20
a) x^2+y^2= (x+y)^2-2xy
=36-2.8=20
b)x^3-y^3=(x-y)^3+3xy.(x-y)
=323+3.8.7=511
x^2y+xy^2+x+y=xy(x+y)+(x+y)=(xy+1)(x+y)=2016
thay xy=13 vào=>(x+y)=144
x^2+y^2=(x+y)^2-2xy=20710
a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)
\(A=xy\left(x+y\right)+\left(y-x\right)\)
\(A=\left(-5\right).2\left(-5+2\right)+2+5\)
\(A=30+7=37\)
b) \(B=3x^3-2y^3-6x^2y^2+xy\)
\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)
\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)
\(B=\frac{11}{36}\)
c) \(C=2x+xy^2-x^2y-2y\)
\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)
\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)
\(C=-\frac{11}{36}\)
\(x+y=5\)
\(\Rightarrow\left(x+y\right)^2=25\)
\(\Leftrightarrow x^2+2xy+y^2=25\) \(\left(1\right)\)
mà \(xy=-2\)
\(\Rightarrow2xy=-4\)
từ \(\left(1\right)\)\(\Rightarrow x^2-4+y^2=25\)
\(\Leftrightarrow x^2+y^2=29\)\(\left(2\right)\)
ta có \(xy=-2\)
\(\Rightarrow-2xy=4\)
từ \(\left(2\right)\Rightarrow x^2-2xy+y^2=33\)
\(\Leftrightarrow\left(x-y\right)^2=33\)
áp dụg HĐT 1 ta có:
(x+y)2=x2+2xy+y2
(x+y)2=(x2+y2)+2xy
25=(x2+y2)-4
=>(x2+y2)=29
áp dụng HĐT 2 ta đc
(x-y)2=x2-2xy+y2
(x-y)2=(x2+y2)-2xy
(x-y)2=29-4
(x-y)2=25
=>x-y=5
áp dụng HĐT 3 ta đc
x2-y2=(x-y)(x+y)
x2-y2=5*5
=>x2-y2=25
k mk đúng nha