K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

x^2y+xy^2+x+y=xy(x+y)+(x+y)=(xy+1)(x+y)=2016

thay xy=13 vào=>(x+y)=144

x^2+y^2=(x+y)^2-2xy=20710

2 tháng 5 2016

ok thanks pạn 

18 tháng 10 2018

\(x^2y+xy^2+x+y=96\)

\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)=96\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)=96\)

\(\Rightarrow x+y=96:12=8\)

\(\Rightarrow\left(x+y\right)^2=64\)

\(\Rightarrow Q=x^2+y^2=\left(x+y\right)^2-2xy\)

\(=64-22=42\)

11 tháng 2 2017

câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)

câu 2: mình tạm chỉnh lại đề tý

\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)

câu 3:

\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)

\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)

\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)

Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010 

11 tháng 2 2017

câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)

thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)

\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)

23 tháng 10 2017

Theo bài ra ta có:

\(x^2y+xy^2+x+y=2010\)

\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Rightarrow\left(x+y\right)\left(xy+1\right)=2010\)

\(\Rightarrow\left(x+y\right)\left(11+1\right)=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=2010\div12=167,5\)

Ta có: \(A=x^4+y^4=\left(x^2\right)^2+2x^2y^2+\left(y^2\right)^2-2x^2y^2\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\times11^2\)

\(\Rightarrow\left[\left(167,5\right)^2-2.11\right]^2-245\)

\(\Rightarrow\left(28056,25-22\right)^2-245=785918928,0625\)

20 tháng 7 2017

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow x=y=z\)

Mà \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\Rightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)

\(\Leftrightarrow3x^{2015}=3^{2016}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)

Vậy \(x=y=z=3\)

16 tháng 7 2017

Bài 1 : Ta có :

x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3

Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :

-x - a = - x + 3

<=> -x + x - a = 3

<=> a = - 3

Vậy GT của a là - 3

16 tháng 7 2017

Bài 2 :

a) \(x^2-2xy-9z^2+y^2\)

= \(\left(x^2-2xy+y^2\right)-9z^2\)

= \(\left(x-y\right)^2-\left(3z\right)^2\)

= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)

Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :

\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000

Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000

b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)

= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)

= ( x- y ) (2)

Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :

\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)

Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)

a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)

=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)

8 tháng 9 2016

Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):

\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)

                                                  \(\Rightarrow\) \(x-y=0\)

                                                  \(\Rightarrow\left(x-y\right)^3=0^3=0\)

11 tháng 5 2016

Biết xy=11 và x2y+xy2+x+y=2010.Tính x2+y2

ta có:x2y+xy2+x+y=2010

<=>xy(x+y)+x+y=2010

<=>(x+y)(xy+1)=2010

<=>x+y=167,5

<=>(x+y)2=x2+y2+2xy=28056,25

<=>x2+y2=28056,25-22=28034,25

16 tháng 9 2020

a) Ta có x + y = 25

=> (x + y)2 = 625

=> x2 + y2 + 2xy = 625

=> x2 + y2 + 10 = 625

=> x2 +y2 = 615

b) Ta có x + y = 3

=> (x + y)3 = 27

=> x3 + 3x2y + 3xy2 + y3 = 27

=> x3 + y3 + 3xy(x + y) = 27

=> x3 + y3 + 9xy = 27 

Lại có x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 2xy = 4

=> xy = 2

Khi đó x3 + y3 + 9xy + 27

=> x3 + y3 + 18 = 27

=> x3 + y3 = 9

c) Ta có x - y = 5

=> (x - y)2 = 25

=> x2 + y2 - 2xy = 25

=> 2xy = -10

=> xy = -5

Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50

16 tháng 9 2020

Bài 4.

a) x2 + y2 = x2 + 2xy + y2 - 2xy

= ( x2 + 2xy + y2 ) - 2xy

= ( x + y )2 - 2xy

= 252 - 2.136

= 625 - 272

= 353

b) x + y = 3

⇔ ( x + y )2 = 9

⇔ x2 + 2xy + y2 = 9

⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )

⇔ 2xy = 4

⇔ xy = 2

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y )

= 33 - 3.2.3

= 27 - 18

= 9