\(^{2x^2}\)+ax +b) =\(^{2x^3}\)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@

B1: Phân tích thành nhân tử:

a) \(6x^2+9x=3x\left(2x+3\right)\)

b) \(4x^2+8x=4x\left(x+2\right)\)

c) \(5x^2+10x=5x\left(x+2\right)\)

d) \(2x^2-8x=2x\left(x-4\right)\)

e) \(5x-15y=5\left(x-3y\right)\)

f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)

\(=\left(x-1-2y\right)\left(x-1+2y\right)\)

h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)

i) \(9x^2-18x+9=\left(3x-3\right)^2\)

k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)

m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)

\(=-\left(2x-y\right)^2\)

n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)

\(=\left(x-31\right)\left(x+1\right)\)

o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)

\(=\left(2+x\right)\left(8+x\right)\)

p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)

\(=\left(5x-5\right)\left(9x-3\right)\)

24 tháng 9 2017

Bài 1 :

a ) \(6x^2+9x=3x\left(x+3\right)\)

b ) \(4x^2+8x=4x\left(x+2\right)\)

c ) \(5x^2+10x=5x\left(x+2\right)\)

d ) \(2x^2-8x=2x\left(x-4\right)\)

e ) \(5x-15y=5\left(x-3y\right)\)

f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)

h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)

i ) \(9x^2-18x+9=\left(3x-3\right)^2\)

k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)

l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)

m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)

n ) \(\left(x-15\right)^2=x^2-30x+15^2\)

o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)

p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)

Bài 2 :

a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)

b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)

c ) \(2x+x^2-2y-2xy=......................\)

d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)

15 tháng 10 2018

\(\left(ax^2+bx+c\right)\left(x+1\right)=ax^3+\left(a+b\right)x^2+\left(b+c\right)x+c\)

đồng nhất đa thức trên với đa thức đã cho ta được

\(\left\{{}\begin{matrix}a=1\\a+b=8\\b+c=19\\c=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=7\\c=12\end{matrix}\right.\)

3 phần kia làm tương tự

18 tháng 10 2022

b: \(\left(ax^2+bx+c\right)\left(x+3\right)\)

\(=ax^3+3ax^2+bx^2+3bx+cx+3c\)

\(=ax^3+x^2\left(3a+b\right)+x\left(3b+c\right)+3c\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}3c=0\\3b+c=-3\\3a+b=2\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=0\\b=-1\\a=1\end{matrix}\right.\)

c: \(\left(x^2+cx+2\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+2a\cdot x+2b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\)

Theo đề, ta có: 2b=-2; bc+2a=0; b+ac=1; a=1

=>b=-1; a=1; c=2

d: \(\left(x^2+cx+1\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+a\cdot x+b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+a\right)+b\)

Theo đề, ta có:

b=2; bc+a=-3; b+ac=0; a=1

=>b=2; a=1; bc=-3-a=-3-1=-4

=>b=2; a=1; 2c=-4

=>b=2; a=1; c=-2

5 tháng 7 2017

a) \(x^3-5x^2+8x-4\)

= \(x^3-x^2-4x^2+4x+4x-4\)

= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2-4x+4\right)\)

= \(\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-9x^2+6x+16\)

= \(\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

c) \(x^3+2x-3\)

= \(x^3-x^2+x^2-x+3x-3\)

= \(x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2+x+3\right)\)

d) \(2x^3-12x^2+17x-2\)

= \(2x^3-4x^2-8x^2+16x+x-2\)

= \(2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right)\)

= \(\left(x-2\right)\left(2x^2-8x+1\right)\)

e) \(x^3-5x^2+3x+9\)

= \(x^3+x^2-6x^2-6x+9x+9\)

= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

f) \(x^3-8x^2+17x+10\)

Câu này có vẻ sai đề, nghiệm cực kì khủng bố @@

g) \(x^3-2x-4\)

= \(x^3-2x^2+2x^2-4x+2x-4\)

= \(x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

= \(\left(x-2\right)\left(x^2+2x+2\right)\)

h) \(x^3+x^2+4\)

= \(x^3+2x^2-x^2+4\)

= \(x^2\left(x+2\right)-\left(x-2\right)\left(x+2\right)\)

= \(\left(x+2\right)\left(x^2-x+2\right)\)

i) \(x^3-7x+6\)

= \(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

a) Ta có: \(x^2+9x+20\)

\(=x^2+4x+5x+20\)

\(=x\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(x+5\right)\)

b) Ta có: \(x^2+x-12\)

\(=x^2+4x-3x-12\)

\(=x\left(x+4\right)-3\left(x+4\right)\)

\(=\left(x+4\right)\left(x-3\right)\)

c) Ta có: \(6x^2-11x-16\)

\(=6\left(x^2-\frac{11}{6}x-\frac{16}{6}\right)\)

\(=6\left(x^2-2\cdot x\cdot\frac{11}{12}+\frac{121}{144}-\frac{505}{144}\right)\)

\(=6\left[\left(x-\frac{11}{12}\right)^2-\frac{505}{144}\right]\)

\(=6\left(x-\frac{11+\sqrt{505}}{12}\right)\left(x-\frac{11-\sqrt{505}}{12}\right)\)

d) Ta có: \(4x^2-8x-5\)

\(=4x^2-10x+2x-5\)

\(=2x\left(2x-5\right)+\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x+1\right)\)

e) Ta có: \(x^3-6x^2-x+30\)

\(=x^3+2x^2-8x^2-16x+15x+30\)

\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-8x+15\right)\)

\(=\left(x+2\right)\left(x^2-3x-5x+15\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)

g) Ta có: \(x^3+9x^2+23x+15\)

\(=x^3+x^2+8x^2+8x+15x+15\)

\(=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+8x+15\right)\)

\(=\left(x+1\right)\left(x^2+3x+5x+15\right)\)

\(=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

h) Ta có: \(2x^4-x^3-9x^2+13x\)

\(=x\left(2x^3-x^2-9x+13\right)\)

i) Ta có: \(x^4+2x^3-16x^2-2x+15\)

\(=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\)

\(=x^3\left(x-3\right)+5x^2\left(x-3\right)-x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x^3+5x^2-x-5\right)\)

\(=\left(x-3\right)\left[x^2\left(x+5\right)-\left(x+5\right)\right]\)

\(=\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\)

\(=\left(x-3\right)\left(x+5\right)\left(x-1\right)\left(x+1\right)\)

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

20 tháng 10 2020

Câu 1) xem lại đề giùm đi em.