\(\sin\alpha\).\(\cos\alpha\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

Ta có: \(\sin^2x+\cos^2x=1\)

Đặt: \(a=\sin x\)\(b=\cos x\)với \(-1\le a;b\le1\)

khi đó có hệ: \(\hept{\begin{cases}a^2+b^2=1\\ab=\frac{12}{15}\end{cases}}\)giải hệ này ra  nhé

14 tháng 3 2020

Hình như cô Chi nhầm sin alpha thành sin x rồi, , ko biết đúng hay không vì em chỉ mới có lớp 7

Ta có hệ thức: \(sin^2\alpha+cos^2\alpha=1\)(có thể chứng minh bằng định lý Pythagoras)

Đặt \(sina=u,sinb=v\)

Ta có hệ phương trình \(\hept{\begin{cases}uv=\frac{12}{25}\\u^2+v^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2uv=\frac{24}{25}\\u^2+v^2=1\end{cases}}\)

\(\Rightarrow\left(u+v\right)^2=\frac{49}{25}\Rightarrow u+v=\frac{7}{5}\)

Đến đây ta lại có hệ \(\hept{\begin{cases}uv=\frac{12}{25}\\u+v=\frac{7}{5}\end{cases}}\)

u,v là nghiệm của phương trình \(x^2-\frac{7}{5}x+\frac{12}{25}=0\)

\(\Delta=\left(\frac{7}{5}\right)^2-4.\frac{12}{25}=\frac{1}{25},\sqrt{\Delta}=\frac{1}{5}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\frac{7}{5}+\frac{1}{5}}{2}=\frac{4}{5}\\x=\frac{\frac{7}{5}-\frac{1}{5}}{2}=\frac{3}{5}\end{cases}}\)

Khi đó \(u=\frac{4}{5};v=\frac{3}{5}\)

Vậy \(sin\alpha=\frac{4}{5};cos\alpha=\frac{3}{5}\)

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

30 tháng 10 2020

\(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\sqrt{5}\Rightarrow\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}\)

Đặt \(\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}=k\)thì \(\cos\alpha=\sqrt{5}k,\sin\alpha=k\)

Vậy \(A=\frac{\sin^2a+\cos^2\alpha}{\sin\alpha.\cos\alpha}=\frac{k^2+5k^2}{\sqrt{5}k.k}=\frac{6}{\sqrt{5}}\)

22 tháng 6 2016

1. \(\frac{cos\alpha+sin\alpha}{cos\alpha-sin\alpha}=\frac{1+\frac{sin\alpha}{cos\alpha}}{1-\frac{sin\alpha}{cos\alpha}}=\frac{1+\frac{1}{2}}{1-\frac{1}{2}}=3\)

2. \(cos\beta=2sin\beta\Rightarrow cos^2\beta=4sin^2\beta\). Do \(cos^2\beta+sin^2\beta=1\Rightarrow5sin^2\beta=1\Rightarrow sin\beta=\frac{1}{\sqrt{5}}\)

\(\Rightarrow cos\beta=\frac{2}{\sqrt{5}}\). Vậy \(sin\beta.cos\beta=\frac{2}{5}\)

3. a. Nhân chéo ra được hệ thức \(sin^2\alpha+cos^2\alpha=1\)

b. Chú ý \(cot^2\alpha=\frac{cos^2\alpha}{sin^2\alpha}\)

NV
29 tháng 8 2020

\(M=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{sina}{cosa}-\frac{cosa}{cosa}}=\frac{tana+1}{tana-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=...\)

\(N=\frac{\frac{sina.cosa}{cos^2a}}{\frac{sin^2a}{cos^2a}-\frac{cos^2a}{cos^2a}}=\frac{tana}{tan^2a-1}=...\) (thay số bấm máy)

\(P=\frac{\frac{sin^3a}{cos^3a}+\frac{cos^3a}{cos^3a}}{\frac{2sina.cos^2a}{cos^3a}+\frac{cosa.sin^2a}{cos^3a}}=\frac{tan^3a+1}{2tana+tan^2a}=...\)