Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0
⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0
Điều kiện để pt đã cho có 2 nghiệm
Do đó
S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2
Đáp án A
Ghi nhớ: Nếu hàm số
liên tục trên đoạn và thì phương trình
có ít nhất một nghiệm nằm trong khoảng .
Ta có x3 - 3x2 + 1 - m = 0 (1) là phương trình hoành độ giao điểm giữa hai đồ thị hàm số y = x3-3x2+1 và y = m (là đường thẳng song song hoặc trùng với Ox).
Xét y = x3-3x2+1 .
Tính y’ = 3x2- 6x
Ta có
y ' = 0 ⇔ 3 x 2 - 6 x = 0 ⇔
Ta có x = 1 thì y = -1
Số nghiệm của phương trình chính là số giao điểm của đồ thị y = x3-3x2+1 và đường thẳng y = m .
Do đó, yêu cầu bài toán khi và chỉ khi -3 < m < -1
Chọn C.
Chọn A.
Điều kiện:
Phương trình
Do đó S = -1 + log23 = log23 – log22 = log23/2.
Ta có x3- 3x2+ 1- m=0 là phương trình hoành độ giao điểm giữa hai đồ thị hàm số
y= x3- 3x2+ 1 và y= m (là đường thẳng song song hoặc trùng với Ox).
+Xét y= x3- 3x2+ 1 .
Đạo hàm y’ = 3x2- 6x
Ta có y’=0 ⇔ 3x2- 6x=0
Khi x= 1 thì y= -1
Dựa vào đồ thị, yêu cầu bài toán khi và chỉ khi -3< m< -1 .
Chọn C.
Chọn A.
Ta có
Phương trình đã cho thành
đây là phương trình đẳng cấp, ta có thể chia cả hai vế cho b > 0 như sau:
+) TH1.
+) TH2.
Do đó
Chọn D.
Phương trình thỏa mãn (*)
Do đó S = 1+ log23 = log26.