Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x+3\right)^2-\left(2x-3\right)^2\\ =2x^2+12x+18-4x^2+12x-9\\ =-2x^2+24x+9=ax^2+bx+c\\ \Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=24\\c=9\end{matrix}\right.\Leftrightarrow a+2ab+3c=-2-96+27=-71\)
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
a)(a+2b-3c-d)(a+2b+3c+d)=[(a+2b)-(3c+d)][(a+2b)+(3c-d)]
=(a+2b)2-(3c-d)2=a2+4ab+4b2-9c2+6cd-d2
câu b tương tự
A=(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
A =(a+1)(a-1)(a+2)(a-2)(a^2+4)(a^2+1)
A =(a^2-1)(a^2+1)(a^2-4)(a^2+4)
A =(a^4-1)(a^4-16)
A =\(a^{16}-16\cdot a^4-a^4+16\)
A =\(a^{16}-17\cdot a^4+16\)
B=(a+2b-3c-d)(a+2b+3c+d)
B=[(a+2b)^2 - (3c +d)^2]
B=[a^2+4ab+4b^2-(9c^2+6cd+d^2)]
B=a^3+4ab+4b^2 - 9c^2 - 6cd - d^2
C=(1-x-2x^3+3x^2)(1-x+2x^3-3x^2)
C=[(1-x)^2-(2x^3-3x^2)^2]
C=[(1-2x+x^2) - (4x^6-12x^5+9x^4)]
C=[1-2x-x^2-4x^6+12x^5-9x^4]
C=-4x^6+12x^5-9x^4-x^2-2x+1
D=(a^6-3a^3+9)(a^3+3)
D=a^9+27
Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó
Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)
\(=x^3+mx^2+xn-kx^2-kmx-kn\)
\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)
Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)
Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:
\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)
\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)
\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)
\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)
Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)
a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3
<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3
<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3
<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3
Đồng nhất hệ số
=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)
b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c
<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c
Đồng nhất hệ số
=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
a) Ta có:
\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)
\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)
b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)
\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)
\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
\(2\left(x+3\right)^2-\left(2x-3\right)^2=2x^2+12x+18-4x^2+12x-9\)
\(=-2x^2+14x+9\)
=>a=-2 ;b=14 và c=9
tự làm:))
2( x + 3 )2 - ( 2x - 3 )2 = ax2 + bx + c
<=> 2( x2 + 6x + 9 ) - ( 4x2 - 12x + 9 ) = ax2 + bx + c
<=> 2x2 + 12x + 18 - 4x2 + 12x - 9 = ax2 + bx + c
<=> -2x2 + 24x + 9 = ax2 + bx + c
<=> a = -2 ; b = 24 ; c = 9
=> a + 2b + 3c = -2 + 2.24 + 3.9 = -2 + 48 + 27 = 73