...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)

b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)

c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)

15 tháng 10 2018

\(\left(ax^2+bx+c\right)\left(x+1\right)=ax^3+\left(a+b\right)x^2+\left(b+c\right)x+c\)

đồng nhất đa thức trên với đa thức đã cho ta được

\(\left\{{}\begin{matrix}a=1\\a+b=8\\b+c=19\\c=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=7\\c=12\end{matrix}\right.\)

3 phần kia làm tương tự

18 tháng 10 2022

b: \(\left(ax^2+bx+c\right)\left(x+3\right)\)

\(=ax^3+3ax^2+bx^2+3bx+cx+3c\)

\(=ax^3+x^2\left(3a+b\right)+x\left(3b+c\right)+3c\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}3c=0\\3b+c=-3\\3a+b=2\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=0\\b=-1\\a=1\end{matrix}\right.\)

c: \(\left(x^2+cx+2\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+2a\cdot x+2b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\)

Theo đề, ta có: 2b=-2; bc+2a=0; b+ac=1; a=1

=>b=-1; a=1; c=2

d: \(\left(x^2+cx+1\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+a\cdot x+b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+a\right)+b\)

Theo đề, ta có:

b=2; bc+a=-3; b+ac=0; a=1

=>b=2; a=1; bc=-3-a=-3-1=-4

=>b=2; a=1; 2c=-4

=>b=2; a=1; c=-2

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1

a: \(\left(x^2+cx+2\right)\left(ax+b\right)\)

\(=ax^3+bx^2+ac\cdot x^2+bc\cdot x+2ax+2b\)

\(=ax^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\)

Theo đề, ta có: a=1; 2b=-2; b+ac=1 và bc+2a=0

=>a=1; b=-1; c-1=1; bc+2a=0

=>a=1; b=-1; c=2

b: \(\left(x^2-x+1\right)\left(ax^2+bx+c\right)\)

\(=ax^4+bx^3+cx^2-ax^3-bx^2-cx+ax^2+bx+c\)

\(=ax^4+x^3\left(b-a\right)+x^2\left(c-b+a\right)+x\left(-c+b\right)+c\)

Theo đề, ta có: 

a=2; b-a=-1; c-b+a=2; -c+b=0; c=1

=>a=2; b=-1+a=-1+2=1; c=1

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác